Channelpedia

PubMed 17303650


Referenced in: none

Automatically associated channels: Cav2.1 , Kir6.2



Title: Dual regulation of the ATP-sensitive potassium channel by caffeine.

Authors: Xia Mao, Yongping Chai, Yu-Fung Lin

Journal, date & volume: Am. J. Physiol., Cell Physiol., 2007 Jun , 292, C2239-58

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/17303650


Abstract
ATP-sensitive potassium (K(ATP)) channels couple cellular metabolic status to changes in membrane electrical properties. Caffeine (1,2,7-trimethylxanthine) has been shown to inhibit several ion channels; however, how caffeine regulates K(ATP) channels was not well understood. By performing single-channel recordings in the cell-attached configuration, we found that bath application of caffeine significantly enhanced the currents of Kir6.2/SUR1 channels, a neuronal/pancreatic K(ATP) channel isoform, expressed in transfected human embryonic kidney (HEK)293 cells in a concentration-dependent manner. Application of nonselective and selective phosphodiesterase (PDE) inhibitors led to significant enhancement of Kir6.2/SUR1 channel currents. Moreover, the stimulatory action of caffeine was significantly attenuated by KT5823, a specific PKG inhibitor, and, to a weaker extent, by BAPTA/AM, a membrane-permeable Ca(2+) chelator, but not by H-89, a selective PKA inhibitor. Furthermore, the stimulatory effect was completely abrogated when KT5823 and BAPTA/AM were co-applied with caffeine. In contrast, the activity of Kir6.2/SUR1 channels was decreased rather than increased by caffeine in cell-free inside-out patches, while tetrameric Kir6.2LRKR368/369/370/371AAAA channels were suppressed regardless of patch configurations. Caffeine also enhanced the single-channel currents of recombinant Kir6.2/SUR2B channels, a nonvascular smooth muscle K(ATP) channel isoform, although the increase was smaller. Moreover, bidirectional effects of caffeine were reproduced on the K(ATP) channel present in the Cambridge rat insulinoma G1 (CRI-G1) cell line. Taken together, our data suggest that caffeine exerts dual regulation on the function of K(ATP) channels: an inhibitory regulation that acts directly on Kir6.2 or some closely associated regulatory protein(s), and a sulfonylurea receptor (SUR)-dependent stimulatory regulation that requires cGMP-PKG and intracellular Ca(2+)-dependent signaling.