Channelpedia

Improved functional expression of human cardiac kv1.5 channels and trafficking-defective mutants by low temperature treatment.


Authors: Wei-Guang Ding, Yu Xie, Futoshi Toyoda, Hiroshi Matsuura

Journal, date & volume: PLoS ONE, 2014 , 9, e92923

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/24663680

Channelpedia reference in: Kv1.5

Abstract
We herein investigated the effect of low temperature exposure on the expression, degradation, localization and activity of human Kv1.5 (hKv1.5). In hKv1.5-expressing CHO cells, the currents were significantly increased when cultured at a reduced temperature (28°C) compared to those observed at 37°C. Western blot analysis indicated that the protein levels (both immature and mature proteins) of hKv1.5 were significantly elevated under the hypothermic condition. Treatment with a proteasome inhibitor, MG132, significantly increased the immature, but not the mature, hKv1.5 protein at 37°C, however, there were no changes in either the immature or mature hKv1.5 proteins at low temperature following MG132 exposure. These observations suggest that the enhancement of the mature hKv1.5 protein at reduced temperature may not result from the inhibition of proteolysis. Moreover, the hKv1.5 fluorescence signal in the cells increased significantly on the cell surface at 28°C versus those cultured at 37°C. Importantly, the low temperature treatment markedly shifted the subcellular distribution of the mature hKv1.5, which showed considerable overlap with the trans-Golgi component. Experiments using tunicamycin, an inhibitor of N-glycosylation, indicated that the N-glycosylation of hKv1.5 is more effective at 28°C than at 37°C. Finally, the hypothermic treatment also rescued the protein expression and currents of trafficking-defective hKv1.5 mutants. These results indicate that low temperature exposure stabilizes the protein in the cellular organelles or on the plasma membrane, and modulates its maturation and trafficking, thus enhancing the currents of hKv1.5 and its trafficking defect mutants.