Channelpedia

Odor enrichment sculpts the abundance of olfactory bulb mitral cells.


Authors: Melissa Cavallin Johnson, K C Biju, Joshua Hoffman, Debra Ann Fadool

Journal, date & volume: Neurosci. Lett., 2013 Apr 29 , 541, 173-8

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/23485739

Channelpedia reference in: Kv1.3

Abstract
Mitral cells are the primary output cell from the olfactory bulb conveying olfactory sensory information to higher cortical areas. Gene-targeted deletion of the Shaker potassium channel Kv1.3 alters voltage-dependence and inactivation kinetics of mitral cell current properties, which contribute to the "Super-smeller" phenotype observed in Kv1.3-null mice. The goal of the current study was to determine if morphology and density are influenced by mitral cell excitability, olfactory environment, and stage of development. Wildtype (WT) and Kv1.3-null (KO) mice were exposed to a single odorant (peppermint or citralva) for 30 days. Under unstimulated conditions, postnatal day 20 KO mice had more mitral cells than their WT counterparts, but no difference in cell size. Odor-enrichment with peppermint, an olfactory and trigeminal stimulus, decreased the number of mitral cells in three month and one year old mice of both genotypes. Mitral cell density was most sensitive to odor-stimulation in three month WT mice. Enrichment at the same age with citralva, a purely olfactory stimulus, decreased cell density regardless of genotype. There were no significant changes in cell body shape in response to citralva exposure, but the cell area was greater in WT mice and selectively greater in the ventral region of the OB in KO mice. This suggests that trigeminal or olfactory stimulation may modify mitral cell area and density while not impacting cell body shape. Mitral cell density can therefore be modulated by the voltage and sensory environment to alter information processing or olfactory perception.