Channelpedia

Some aspects of the physiological role of ion channels in the nervous system.


Authors: Y Pichon, L Prime, P Benquet, F Tiaho

Journal, date & volume: Eur. Biophys. J., 2004 May , 33, 211-26

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/14722689

Channelpedia reference in: Kv4.1

Abstract
Recent analyses of the genomes of several animal species, including man, have revealed that a large number of ion channels are present in the nervous system. Our understanding of the physiological role of these channels in the nervous system has followed the evolution of biophysical techniques during the last century. The observation and the quantification of the electrical events associated with the operation of the ionic channels has been, and still is, one of the best tools to analyse the various aspects of their contribution to nerve function. For this reason, we have chosen to use electrophysiological recordings to illustrate some of the main functions of these channels. The properties and the roles of Na+ and K+ channels in neuronal resting and action potentials are illustrated in the case of the giant axons of the squid and the cockroach. The nature and role of the calcium currents in the bursting behaviour of the neurons are illustrated for Aplysia giant neurons. The relationship between presynaptic calcium currents and synaptic transmission is shown for the squid giant synapse. The involvement of calcium channels in survival and neurite outgrowth of cultured neurons is exemplified using embryonic cockroach brain neurons. This same neuronal preparation is used to illustrate ion channel noise and single-channel events associated with the binding of agonists to nicotinic receptors. Some features of the synaptic activity in the central nervous system are shown, with examples from the cercal nerve giant-axon preparation of the cockroach. The interplay of different ion conductances involved in the oscillatory behaviour of the Xenopus spinal motoneurons is illustrated and discussed. The last part of this review deals with ionic homeostasis in the brain and the function of glial cells, with examples from Necturus and squids.