Channelpedia

Nav1.5 Channel

1259 automatically matched literature references

3

5

Schilling JM et al. Electrophysiology and metabolism of caveolin-3-overexpressing mice.
Basic Res. Cardiol., 2016 May , 111 (28).

9

Zaklyazminskaya E et al. The role of mutations in the SCN5A gene in cardiomyopathies.
Biochim. Biophys. Acta, 2016 Jul , 1863 (1799-805).

10

Sottas V et al. Negative-dominance phenomenon with genetic variants of the cardiac sodium channel Nav1.5.
Biochim. Biophys. Acta, 2016 Jul , 1863 (1791-8).

12

Wang HG et al. A novel NaV1.5 voltage sensor mutation associated with severe atrial and ventricular arrhythmias.
J. Mol. Cell. Cardiol., 2016 Jan 19 , 92 (52-62).

21

Kubanek J et al. Ultrasound modulates ion channel currents.
Sci Rep, 2016 , 6 (24170).

26

Climent AM et al. The Role of Atrial Tissue Remodeling on Rotor Dynamics: An In-Vitro Study.
Am. J. Physiol. Heart Circ. Physiol., 2015 Sep 25 , (ajpheart.00055.2015).

27

Neshatian L et al. Ranolazine inhibits voltage-gated mechanosensitive sodium channels in human colon circular smooth muscle cells.
Am. J. Physiol. Gastrointest. Liver Physiol., 2015 Sep 15 , 309 (G506-12).

28

Abdelsayed M et al. Differential thermosensitivity in mixed syndrome cardiac sodium channel mutants.
J. Physiol. (Lond.), 2015 Sep 15 , 593 (4201-23).

29

30

Aktas CC et al. In vitro effects of phenytoin and DAPT on MDA-MB-231 breast cancer cells.
Acta Biochim. Biophys. Sin. (Shanghai), 2015 Sep , 47 (680-6).

32

Musa H et al. SCN5A variant that blocks fibroblast growth factor homologous factor regulation causes human arrhythmia.
Proc. Natl. Acad. Sci. U.S.A., 2015 Oct 6 , 112 (12528-33).

36

38

39

Han Z et al. The effects of A-803467 on cardiac Nav1.5 channels.
Eur. J. Pharmacol., 2015 May 5 , 754 (52-60).

43

Marionneau C et al. Regulation of the cardiac Na+ channel NaV1.5 by post-translational modifications.
J. Mol. Cell. Cardiol., 2015 May , 82 (36-47).

48

Ossola D et al. Force-controlled patch clamp of beating cardiac cells.
Nano Lett., 2015 Mar 11 , 15 (1743-50).

49

51

53

Mercier A et al. Nav1.5 channels can reach the plasma membrane through distinct N-glycosylation states.
Biochim. Biophys. Acta, 2015 Jun , 1850 (1215-23).

54

Wannous R et al. Suppression of PPARβ, and DHA treatment, inhibit NaV1.5 and NHE-1 pro-invasive activities.
Pflugers Arch., 2015 Jun , 467 (1249-59).

55

Stroemlund LW et al. Gap junctions - guards of excitability.
Biochem. Soc. Trans., 2015 Jun , 43 (508-12).

62

Stattin EL et al. Genetic screening in sudden cardiac death in the young can save future lives.
Int. J. Legal Med., 2015 Jul 31 , ().

63

Watanabe H et al. Genetics of Brugada syndrome.
J. Hum. Genet., 2015 Jul 30 , ().

67

Verstraelen TE et al. The role of the SCN5A-encoded channelopathy in irritable bowel syndrome and other gastrointestinal disorders.
Neurogastroenterol. Motil., 2015 Jul , 27 (906-13).

70

Saber S et al. Complex genetic background in a large family with Brugada syndrome.
Physiol Rep, 2015 Jan 1 , 3 ().

71

Baruteau AE et al. Inherited progressive cardiac conduction disorders.
Curr. Opin. Cardiol., 2015 Jan , 30 (33-9).

73

Park DS et al. Genetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias.
J. Clin. Invest., 2015 Jan , 125 (403-12).

74

Wilde AA et al. Bringing home the bacon? The next step in cardiac sodium channelopathies.
J. Clin. Invest., 2015 Jan , 125 (99-101).

76

Riuró H et al. Genetic analysis, in silico prediction, and family segregation in long QT syndrome.
Eur. J. Hum. Genet., 2015 Jan , 23 (79-85).

84

Peters CH et al. Triggers for arrhythmogenesis in the Brugada and long QT 3 syndromes.
Prog. Biophys. Mol. Biol., 2015 Dec 20 , ().

86

Qureshi SF et al. Mutational analysis of SCN5A gene in long QT syndrome.
Meta Gene, 2015 Dec , 6 (26-35).

90

Potet F et al. Intracellular calcium attenuates late current conducted by mutant human cardiac sodium channels.
Circ Arrhythm Electrophysiol, 2015 Aug , 8 (933-41).

94

Willis BC et al. Protein Assemblies of Sodium and Inward Rectifier Potassium Channels Control Cardiac Excitability and Arrhythmogenesis.
Am. J. Physiol. Heart Circ. Physiol., 2015 Apr 10 , (ajpheart.00176.2015).

104

Han Z et al. Deletion of PDK1 causes cardiac sodium current reduction in mice.
PLoS ONE, 2015 , 10 (e0122436).

106

Wang L et al. De Novo Mutation in the SCN5A Gene Associated with Brugada Syndrome.
Cell. Physiol. Biochem., 2015 , 36 (2250-62).

108

113

Mirams GR et al. Prediction of Thorough QT study results using action potential simulations based on ion channel screens.
J Pharmacol Toxicol Methods, 2014 Nov-Dec , 70 (246-54).

114

Brugada R et al. Brugada syndrome.
Methodist Debakey Cardiovasc J, 2014 Jan-Mar , 10 (25-8).

116

Sayeed MZ et al. Brugada syndrome with a novel missense mutation in SCN5A gene: a case report from Bangladesh.
Indian Heart J, 2014 Jan-Feb , 66 (104-7).

118

Ho GD et al. Discovery of pyrrolo-benzo-1,4-diazines as potent Na(v)1.7 sodium channel blockers.
Bioorg. Med. Chem. Lett., 2014 Sep 1 , 24 (4110-3).

119

120

Bartok A et al. Margatoxin is a non-selective inhibitor of human Kv1.3 K(+) channels.
Toxicon, 2014 Sep , 87 (6-16).

121

van Hoeijen DA et al. Cardiac sodium channels and inherited electrophysiological disorders: an update on the pharmacotherapy.
Expert Opin Pharmacother, 2014 Sep , 15 (1875-87).

123

124

Shi D et al. Reduction in dynamin-2 is implicated in ischaemic cardiac arrhythmias.
J. Cell. Mol. Med., 2014 Oct , 18 (1992-9).

125

127

Wang X et al. Angiotensin-(1-7) prevent atrial tachycardia induced sodium channel remodeling.
Pacing Clin Electrophysiol, 2014 Oct , 37 (1349-56).

128

Liu M et al. Cardiac sodium channel mutations: why so many phenotypes?
Nat Rev Cardiol, 2014 Oct , 11 (607-15).

132

133

Chatin B et al. Dynamitin affects cell-surface expression of voltage-gated sodium channel Nav1.5.
Biochem. J., 2014 Nov 1 , 463 (339-49).

138

Ilkhanoff L et al. A common SCN5A variant is associated with PR interval and atrial fibrillation among African Americans.
J. Cardiovasc. Electrophysiol., 2014 Nov , 25 (1150-7).

139

Frolov RV et al. Celecoxib and ion channels: a story of unexpected discoveries.
Eur. J. Pharmacol., 2014 May 5 , 730 (61-71).

143

144

Wang Q et al. Gain-of-function KCNH2 mutations in patients with Brugada syndrome.
J. Cardiovasc. Electrophysiol., 2014 May , 25 (522-30).

147

Andreasen L et al. Brugada syndrome risk loci seem protective against atrial fibrillation.
Eur. J. Hum. Genet., 2014 Mar 26 , ().

152

Elíes J et al. Inhibition of the cardiac Na⁺ channel Nav1.5 by carbon monoxide.
J. Biol. Chem., 2014 Jun 6 , 289 (16421-9).

156

Coleman N et al. New Positive KCa Channel Gating Modulators with Selectivity for KCa3.1.
Mol. Pharmacol., 2014 Jun 23 , ().

157

Ben-Johny M et al. Conservation of Ca(2+)/Calmodulin Regulation across Na and Ca(2+) Channels.
Cell, 2014 Jun 19 , 157 (1657-70).

158

Zhang Y et al. Measurement and interpretation of electrocardiographic QT intervals in murine hearts.
Am. J. Physiol. Heart Circ. Physiol., 2014 Jun 1 , 306 (H1553-7).

163

Foadi N et al. Inhibition of voltage-gated Na⁺ channels by the synthetic cannabinoid ajulemic acid.
Anesth. Analg., 2014 Jun , 118 (1238-45).

164

Alday A et al. Ionic channels underlying the ventricular action potential in zebrafish embryo.
Pharmacol. Res., 2014 Jun , 84 (26-31).

168

Hu D et al. Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome.
J. Am. Coll. Cardiol., 2014 Jul 8 , 64 (66-79).

170

Dybkova N et al. Tubulin polymerization disrupts cardiac β-adrenergic regulation of late INa.
Cardiovasc. Res., 2014 Jul 1 , 103 (168-77).

171

Friedrich C et al. Gain-of-function mutation in TASK-4 channels and severe cardiac conduction disorder.
EMBO Mol Med, 2014 Jul , 6 (937-51).

172

Glengarry JM et al. Long QT molecular autopsy in sudden infant death syndrome.
Arch. Dis. Child., 2014 Jul , 99 (635-40).

180

Gajewiak J et al. A disulfide tether stabilizes the block of sodium channels by the conotoxin μO§-GVIIJ.
Proc. Natl. Acad. Sci. U.S.A., 2014 Feb 18 , 111 (2758-63).

181

Hu D et al. ABCC9 is a novel Brugada and early repolarization syndrome susceptibility gene.
Int. J. Cardiol., 2014 Feb 15 , 171 (431-42).

185

Jones JM et al. Modeling human epilepsy by TALEN targeting of mouse sodium channel Scn8a.
Genesis, 2014 Feb , 52 (141-8).

186

Zhang Y et al. The SCN5A mutation A1180V is associated with electrocardiographic features of LQT3.
Pediatr Cardiol, 2014 Feb , 35 (295-300).

187

189

Schroder EA et al. Light phase-restricted feeding slows basal heart rate to exaggerate the type-3 long QT syndrome phenotype in mice.
Am. J. Physiol. Heart Circ. Physiol., 2014 Dec 15 , 307 (H1777-85).

191

Savio-Galimberti E et al. Atrial Fibrillation and SCN5A Variants.
Card Electrophysiol Clin, 2014 Dec 1 , 6 (741-748).

193

Lodder EM et al. Integrative genomic approach identifies multiple genes involved in cardiac collagen deposition.
Circ Cardiovasc Genet, 2014 Dec , 7 (790-8).

194

Huang WF et al. Role of sodium channels in the spontaneous excitability of early embryonic cardiomyocytes.
Chin J Physiol, 2014 Aug 31 , 57 (188-97).

195

201

Amin AS SCN5A-related dilated cardiomyopathy: what do we know?
Heart Rhythm, 2014 Aug , 11 (1454-5).

207

Abriel H et al. Unexpected α-α interactions with NaV1.5 genetic variants in Brugada syndrome.
Circ Cardiovasc Genet, 2014 Apr 1 , 7 (97-9).

208

van den Boogaard M et al. A common genetic variant within SCN10A modulates cardiac SCN5A expression.
J. Clin. Invest., 2014 Apr 1 , 124 (1844-52).

209

Park DS et al. Nav-igating through a complex landscape: SCN10A and cardiac conduction.
J. Clin. Invest., 2014 Apr 1 , 124 (1460-2).

210

Hoshi M et al. Brugada syndrome disease phenotype explained in apparently benign sodium channel mutations.
Circ Cardiovasc Genet, 2014 Apr 1 , 7 (123-31).

211

Wang D et al. Cardiac channelopathy testing in 274 ethnically diverse sudden unexplained deaths.
Forensic Sci. Int., 2014 Apr , 237 (90-9).

212

Kruse M et al. TRPM4 channels in the cardiovascular system.
Curr Opin Pharmacol, 2014 Apr , 15 (68-73).

213

214

Tester DJ et al. GENETICS OF LONG QT SYNDROME.
Methodist Debakey Cardiovasc J, 2014 1 , 10 (29-33).

215

Moreau A et al. Biophysics, pathophysiology, and pharmacology of ion channel gating pores.
Front Pharmacol, 2014 , 5 (53).

217

223

Shimizu W Clinical and genetic diagnosis for inherited cardiac arrhythmias.
J Nippon Med Sch, 2014 , 81 (203-10).

224

Zakliaz'minskaia EV et al. [Dilated cardiomyopathy caused by p.E446K mutation in SCN5A gene].
Kardiologiia, 2014 , 54 (92-6).

225

Miller D et al. Sodium channels, cardiac arrhythmia, and therapeutic strategy.
Adv. Pharmacol., 2014 , 70 (367-92).

227

Jones DK et al. Proton modulation of cardiac I Na: a potential arrhythmogenic trigger.
Handb Exp Pharmacol, 2014 , 221 (169-81).

228

Antzelevitch C et al. The role of late I Na in development of cardiac arrhythmias.
Handb Exp Pharmacol, 2014 , 221 (137-68).

233

Zimmer T et al. Voltage-gated sodium channels in the mammalian heart.
Glob Cardiol Sci Pract, 2014 , 2014 (449-63).

234

Sumitomo N E1784K mutation in SCN5A and overlap syndrome.
Circ. J., 2014 , 78 (1839-40).

244

Ertugrul I et al. Follow up of a family with asymptomatic compound long QT syndrome mutations.
Genet. Couns., 2014 , 25 (399-403).

245

Gabelli SB et al. Regulation of the NaV1.5 cytoplasmic domain by calmodulin.
Nat Commun, 2014 , 5 (5126).

248

Barajas-Martinez H et al. [Genetic and molecular basis for sodium channel-mediated Brugada syndrome].
Arch Cardiol Mex, 2013 Oct-Dec , 83 (295-302).

249

Partemi S et al. Analysis of the arrhythmogenic substrate in human heart failure.
Cardiovasc. Pathol., 2013 Mar-Apr , 22 (133-40).

250

Hermida JS et al. Dual phenotypic transmission in Brugada syndrome.
Arch Cardiovasc Dis, 2013 Jun-Jul , 106 (366-72).

251

Elkins RC et al. Variability in high-throughput ion-channel screening data and consequences for cardiac safety assessment.
J Pharmacol Toxicol Methods, 2013 Jul-Aug , 68 (112-22).

252

Morissette P et al. The anesthetized guinea pig: An effective early cardiovascular derisking and lead optimization model.
J Pharmacol Toxicol Methods, 2013 Jul-Aug , 68 (137-49).

255

Lang F et al. Serum and glucocorticoid inducible kinase, metabolic syndrome, inflammation, and tumor growth.
Hormones (Athens), 2013 Apr-Jun , 12 (160-71).

257

259

Shryock JC et al. The arrhythmogenic consequences of increasing late INa in the cardiomyocyte.
Cardiovasc. Res., 2013 Sep 1 , 99 (600-11).

261

Matthews GD et al. Action potential wavelength restitution predicts alternans and arrhythmia in murine Scn5a(+/-) hearts.
J. Physiol. (Lond.), 2013 Sep 1 , 591 (4167-88).

266

267

Sottas V et al. Characterization of 2 genetic variants of Na(v) 1.5-arginine 689 found in patients with cardiac arrhythmias.
J. Cardiovasc. Electrophysiol., 2013 Sep , 24 (1037-46).

268

271

Black JA et al. Noncanonical roles of voltage-gated sodium channels.
Neuron, 2013 Oct 16 , 80 (280-91).

272

Sheets MF et al. Outward stabilization of the voltage sensor in domain II but not domain I speeds inactivation of voltage-gated sodium channels.
Am. J. Physiol. Heart Circ. Physiol., 2013 Oct 15 , 305 (H1213-21).

276

277

Gao G et al. Unfolded protein response regulates cardiac sodium current in systolic human heart failure.
Circ Arrhythm Electrophysiol, 2013 Oct , 6 (1018-24).

279

Lee YS et al. Long QT syndrome: a Korean single center study.
J. Korean Med. Sci., 2013 Oct , 28 (1454-60).

281

Hummel YM et al. Ventricular dysfunction in a family with long QT syndrome type 3.
Europace, 2013 Oct , 15 (1516-21).

286

293

Aziz PF et al. Do LQTS gene single nucleotide polymorphisms alter QTc intervals at rest and during exercise stress testing?
Ann Noninvasive Electrocardiol, 2013 May , 18 (288-93).

294

Kim JJ et al. Bradycardia alters Ca(2+) dynamics enhancing dispersion of repolarization and arrhythmia risk.
Am. J. Physiol. Heart Circ. Physiol., 2013 Mar 15 , 304 (H848-60).

295

296

Letsas KP et al. Sinus node disease in subjects with type 1 ECG pattern of Brugada syndrome.
J Cardiol, 2013 Mar , 61 (227-31).

300

Panguluri SK et al. Hyperoxia-induced hypertrophy and ion channel remodeling in left ventricle.
Am. J. Physiol. Heart Circ. Physiol., 2013 Jun , 304 (H1651-61).

301

Lang F et al. Therapeutic potential of serum and glucocorticoid inducible kinase inhibition.
Expert Opin Investig Drugs, 2013 Jun , 22 (701-14).

303

García-Molina E et al. A study of the SCN5A gene in a cohort of 76 patients with Brugada syndrome.
Clin. Genet., 2013 Jun , 83 (530-8).

304

Nilsson MF et al. Comparative effects of sodium channel blockers in short term rat whole embryo culture.
Toxicol. Appl. Pharmacol., 2013 Jul 8 , ().

308

Ravens U et al. Atrial selectivity of antiarrhythmic drugs.
J. Physiol. (Lond.), 2013 Jul 16 , ().

309

McCormack K et al. Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated sodium channels.
Proc. Natl. Acad. Sci. U.S.A., 2013 Jul 16 , 110 (E2724-32).

310

Takanari H et al. Efficient and specific cardiac IK1 inhibition by a new pentamidine analogue.
Cardiovasc. Res., 2013 Jul 1 , 99 (203-14).

312

Gillet L et al. NaV1.5 and interacting proteins in human arrhythmogenic cardiomyopathy.
Future Cardiol, 2013 Jul , 9 (467-70).

313

316

Zhang Q et al. [Desmoplakin expression silencing affects cardiac voltage-gated sodium channel Nav1.5 in HL-1 cells].
Nan Fang Yi Ke Da Xue Xue Bao, 2013 Jul , 33 (983-9).

317

Schroder EA et al. The Cardiomyocyte Molecular Clock, Regulation of Scn5a and Arrhythmia Susceptibility.
Am. J. Physiol., Cell Physiol., 2013 Jan 30 , ().

320

324

Gao G et al. RBM25/LUC7L3 function in cardiac sodium channel splicing regulation of human heart failure.
Trends Cardiovasc. Med., 2013 Jan , 23 (5-8).

326

327

Gao G et al. SCN5A splicing variants and the possibility of predicting heart failure-associated arrhythmia.
Expert Rev Cardiovasc Ther, 2013 Feb , 11 (117-9).

330

van den Boogaard M et al. From GWAS to function: Genetic variation in sodium channel gene enhancer influences electrical patterning.
Trends Cardiovasc. Med., 2013 Dec 17 , ().

332

Wahbi K et al. Brugada syndrome and abnormal splicing of SCN5A in myotonic dystrophy type 1.
Arch Cardiovasc Dis, 2013 Dec , 106 (635-43).

333

Yu JH et al. [SCN5A mutation in patients with Brugada electrocardiographic pattern induced by fever].
Zhonghua Xin Xue Guan Bing Za Zhi, 2013 Dec , 41 (1010-4).

335

van Duijvenboden K et al. Gene regulatory elements of the cardiac conduction system.
Brief Funct Genomics, 2013 Aug 22 , ().

336

Bradley E et al. The cardiac sodium current Na(v)1.5 is functionally expressed in rabbit bronchial smooth muscle cells.
Am. J. Physiol., Cell Physiol., 2013 Aug 15 , 305 (C427-35).

337

339

Parisi P et al. Coexistence of epilepsy and Brugada syndrome in a family with SCN5A mutation.
Epilepsy Res., 2013 Aug , 105 (415-8).

340

Li X et al. [A simulation study for the effect of acid concentration and temperture on sick sinus syndrome].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2013 Aug , 30 (697-703).

343

Li A et al. Genetic biomarkers in Brugada syndrome.
Biomark Med, 2013 Aug , 7 (535-46).

344

Kaufmann SG et al. Distribution and function of sodium channel subtypes in human atrial myocardium.
J. Mol. Cell. Cardiol., 2013 Aug , 61 (133-41).

347

Cheng J et al. Caveolin-3 suppresses late sodium current by inhibiting nNOS-dependent S-nitrosylation of SCN5A.
J. Mol. Cell. Cardiol., 2013 Aug , 61 (102-10).

348

Rhett JM et al. The perinexus: sign-post on the path to a new model of cardiac conduction?
Trends Cardiovasc. Med., 2013 Aug , 23 (222-8).

350

Crotti L et al. Long QT syndrome-associated mutations in intrauterine fetal death.
JAMA, 2013 Apr 10 , 309 (1473-82).

351

Hu RM et al. Digenic inheritance novel mutations in SCN5a and SNTA1 increase late I(Na) contributing to LQT syndrome.
Am. J. Physiol. Heart Circ. Physiol., 2013 Apr 1 , 304 (H994-H1001).

354

Black JA et al. Nav1.5 sodium channels in macrophages in multiple sclerosis lesions.
Mult. Scler., 2013 Apr , 19 (532-42).

358

Hegyi B et al. Selectivity problems with drugs acting on cardiac Na⁺ and Ca²⁺ channels.
Curr. Med. Chem., 2013 , 20 (2552-71).

362

Di Domenico M et al. Biomarker discovery by plasma proteomics in familial Brugada Syndrome.
Front. Biosci., 2013 , 18 (564-71).

364

Reingardienė D et al. Brugada-like electrocardiographic patterns induced by hyperkalemia.
Medicina (Kaunas), 2013 , 49 (148-53).

370

375

Auerbach DS et al. Altered cardiac electrophysiology and SUDEP in a model of Dravet syndrome.
PLoS ONE, 2013 , 8 (e77843).

381

391

Zumhagen S et al. Inherited long QT syndrome: clinical manifestation, genetic diagnostics, and therapy.
Herzschrittmacherther Elektrophysiol, 2012 Sep , 23 (211-9).

392

Balasuriya D et al. The sigma-1 receptor binds to the Nav1.5 voltage-gated Na+ channel with 4-fold symmetry.
J. Biol. Chem., 2012 Oct 26 , 287 (37021-9).

393

Mann SA et al. R222Q SCN5A mutation is associated with reversible ventricular ectopy and dilated cardiomyopathy.
J. Am. Coll. Cardiol., 2012 Oct 16 , 60 (1566-73).

403

Hong K et al. Concomitant Brugada-like and short QT electrocardiogram linked to SCN5A mutation.
Eur. J. Hum. Genet., 2012 Nov , 20 (1189-92).

408

Santos LF et al. [Diagnostic criteria for the Brugada syndrome: can they be improved?].
Rev Port Cardiol, 2012 May , 31 (355-62).

413

Besana A et al. Nadolol block of Nav1.5 does not explain its efficacy in the long QT syndrome.
J. Cardiovasc. Pharmacol., 2012 Mar , 59 (249-53).

417

Hardziyenka M et al. Electrophysiologic remodeling of the left ventricle in pressure overload-induced right ventricular failure.
J. Am. Coll. Cardiol., 2012 Jun 12 , 59 (2193-202).

418

Catalano A et al. An improved synthesis of m-hydroxymexiletine, a potent mexiletine metabolite.
Drug Metab Lett, 2012 Jun 1 , 6 (124-8).

419

Gönczi M et al. Age-dependent changes in ion channel mRNA expression in canine cardiac tissues.
Gen. Physiol. Biophys., 2012 Jun , 31 (153-62).

422

Ren CT et al. Cloning and expression of the two new variants of Nav1.5/SCN5A in rat brain.
Mol. Cell. Biochem., 2012 Jun , 365 (139-48).

429

Yang T et al. Blocking scn10a channels in heart reduces late sodium current and is antiarrhythmic.
Circ. Res., 2012 Jul 20 , 111 (322-32).

430

van den Boogaard M et al. Genetic variation in T-box binding element functionally affects SCN5A/SCN10A enhancer.
J. Clin. Invest., 2012 Jul 2 , 122 (2519-30).

431

Arnolds DE et al. TBX5 drives Scn5a expression to regulate cardiac conduction system function.
J. Clin. Invest., 2012 Jul 2 , 122 (2509-18).

433

Laurent G et al. Multifocal Ectopic Purkinje-Related Premature Contractions: A New SCN5A-Related Cardiac Channelopathy.
J. Am. Coll. Cardiol., 2012 Jul 10 , 60 (144-56).

436

Lu J et al. Improving cardiac conduction with a skeletal muscle sodium channel by gene and cell therapy.
J. Cardiovasc. Pharmacol., 2012 Jul , 60 (88-99).

441

Poh YC et al. Quantification of gastrointestinal sodium channelopathy.
J. Theor. Biol., 2012 Jan 21 , 293 (41-8).

443

Rook MB et al. Biology of cardiac sodium channel Nav1.5 expression.
Cardiovasc. Res., 2012 Jan 1 , 93 (12-23).

448

Hallaq H et al. Activation of protein kinase C alters the intracellular distribution and mobility of cardiac Na+ channels.
Am. J. Physiol. Heart Circ. Physiol., 2012 Feb , 302 (H782-9).

449

450

456

Selly JB et al. [Cardiac sinus node dysfunction due to a new mutation of the SCN5A gene].
Arch Pediatr, 2012 Aug , 19 (837-41).

457

Hegyi B et al. Tetrodotoxin blocks L-type Ca2+ channels in canine ventricular cardiomyocytes.
Pflugers Arch., 2012 Aug , 464 (167-74).

461

Song W et al. Cardiac sodium channel Nav1.5 mutations and cardiac arrhythmia.
Pediatr Cardiol, 2012 Aug , 33 (943-9).

469

Lippi G et al. Genetic and clinical aspects of Brugada syndrome: an update.
Adv Clin Chem, 2012 , 56 (197-208).

472

Veerakul G et al. Brugada syndrome: two decades of progress.
Circ. J., 2012 , 76 (2713-22).

475

Lazarczyk MJ et al. Selective acquired long QT syndrome (saLQTS) upon risperidone treatment.
BMC Psychiatry, 2012 , 12 (220).

476

Nakajima T et al. KCNE3 T4A as the genetic basis of Brugada-pattern electrocardiogram.
Circ. J., 2012 , 76 (2763-72).

483

Vohra J Diagnosis and Management of Brugada Syndrome.
, 2011 Sep 21 , ().

485

Yao L et al. Nav1.5-dependent persistent Na+ influx activates CaMKII in rat ventricular myocytes and N1325S mice.
Am. J. Physiol., Cell Physiol., 2011 Sep , 301 (C577-86).

487

490

491

Calloe K et al. Multiple arrhythmic syndromes in a newborn, owing to a novel mutation in SCN5A.
Can. J. Physiol. Pharmacol., 2011 Oct , 89 (723-36).

492

Tester DJ et al. Unexplained drownings and the cardiac channelopathies: a molecular autopsy series.
Mayo Clin. Proc., 2011 Oct , 86 (941-7).

493

Zygmunt AC et al. Mechanisms of atrial-selective block of Na⁺ channels by ranolazine: I. Experimental analysis of the use-dependent block.
Am. J. Physiol. Heart Circ. Physiol., 2011 Oct , 301 (H1606-14).

495

497

Jones DK et al. Extracellular proton modulation of the cardiac voltage-gated sodium channel, Nav1.5.
Biophys. J., 2011 Nov 2 , 101 (2147-56).

498

499

Parvez B et al. The "missing" link in atrial fibrillation heritability.
J Electrocardiol, 2011 Nov , 44 (641-4).

504

Martin CA et al. Mapping of reentrant spontaneous polymorphic ventricular tachycardia in a Scn5a+/- mouse model.
Am. J. Physiol. Heart Circ. Physiol., 2011 May , 300 (H1853-62).

506

Postema PG et al. Sodium channelopathies: do we really understand what's going on?
J. Cardiovasc. Electrophysiol., 2011 May , 22 (590-3).

511

Shinlapawittayatorn K et al. A common SCN5A polymorphism modulates the biophysical defects of SCN5A mutations.
Heart Rhythm, 2011 Mar , 8 (455-62).

517

Kattygnarath D et al. MOG1: a new susceptibility gene for Brugada syndrome.
Circ Cardiovasc Genet, 2011 Jun , 4 (261-8).

522

Tveito A et al. Defining candidate drug characteristics for Long-QT (LQT3) syndrome.
Math Biosci Eng, 2011 Jul , 8 (861-73).

527

Chockalingam P et al. Fever-induced life-threatening arrhythmias in children harboring an SCN5A mutation.
Pediatrics, 2011 Jan , 127 (e239-44).

528

529

Widmark J et al. Differential evolution of voltage-gated sodium channels in tetrapods and teleost fishes.
Mol. Biol. Evol., 2011 Jan , 28 (859-71).

531

Hofshi A et al. A combined gene and cell therapy approach for restoration of conduction.
Heart Rhythm, 2011 Jan , 8 (121-30).

532

536

Albesa M et al. Regulation of the cardiac sodium channel Nav1.5 by utrophin in dystrophin-deficient mice.
Cardiovasc. Res., 2011 Feb 1 , 89 (320-8).

537

538

Sun LP et al. [Update on cardiac SCN5A gene mutation and dilated cardiomyopathy].
Zhonghua Xin Xue Guan Bing Za Zhi, 2011 Feb , 39 (182-4).

545

Sung RK et al. QTc prolongation and family history of sudden death in a patient with desmin cardiomyopathy.
Pacing Clin Electrophysiol, 2011 Dec , 34 (e105-8).

548

553

Jeff JM et al. SCN5A variation is associated with electrocardiographic traits in the Jackson Heart Study.
Circ Cardiovasc Genet, 2011 Apr , 4 (139-44).

555

Zhou R et al. Whole genome network analysis of ion channels and connexins in myocardial infarction.
Cell. Physiol. Biochem., 2011 , 27 (299-304).

558

Smith JG et al. Genome-wide association studies of the PR interval in African Americans.
PLoS Genet., 2011 , 7 (e1001304).

560

Frolov RV et al. Inhibition of HERG potassium channels by celecoxib and its mechanism.
PLoS ONE, 2011 , 6 (e26344).

563

Himmel HM et al. QTc shortening with a new investigational cancer drug: a brief case study.
J Pharmacol Toxicol Methods, 2010 Jul-Aug , 62 (72-81).

567

Bokil NJ et al. Molecular genetics of long QT syndrome.
Mol. Genet. Metab., 2010 Sep , 101 (1-8).

570

572

Dautova Y et al. Atrial arrhythmogenic properties in wild-type and Scn5a+/- murine hearts.
Exp. Physiol., 2010 Oct , 95 (994-1007).

575

Kotta CM et al. Novel sodium channel SCN5A mutations in Brugada syndrome patients from Greece.
Int. J. Cardiol., 2010 Nov 5 , 145 (45-8).

579

Gavrielatos G et al. Sensitivity and specificity of sodium channel blocking test in the diagnosis of Brugada syndrome.
Int. J. Cardiol., 2010 May 28 , 141 (e31-3).

582

583

Allegue C et al. A new approach to long QT syndrome mutation detection by Sequenom MassARRAY system.
Electrophoresis, 2010 May , 31 (1648-55).

584

Gui J et al. Mutation-specific effects of polymorphism H558R in SCN5A-related sick sinus syndrome.
J. Cardiovasc. Electrophysiol., 2010 May , 21 (564-73).

585

Campuzano O et al. Genetics of Brugada syndrome.
Curr. Opin. Cardiol., 2010 May , 25 (210-5).

586

Lu JT et al. Recent progress in congenital long QT syndrome.
, 2010 Mar 10 , ().

587

Casini S et al. Tubulin polymerization modifies cardiac sodium channel expression and gating.
Cardiovasc. Res., 2010 Mar 1 , 85 (691-700).

589

598

Remme CA et al. Sodium Channel (Dys)Function and Cardiac Arrhythmias.
, 2010 Jul 14 , ().

599

Fabritz L et al. Autonomic modulation and antiarrhythmic therapy in a model of long QT syndrome type 3.
Cardiovasc. Res., 2010 Jul 1 , 87 (60-72).

600

Schroeter A et al. Structure and function of splice variants of the cardiac voltage-gated sodium channel Na(v)1.5.
J. Mol. Cell. Cardiol., 2010 Jul , 49 (16-24).

601

Desaphy JF et al. Molecular determinants of state-dependent block of voltage-gated sodium channels by pilsicainide.
Br. J. Pharmacol., 2010 Jul , 160 (1521-33).

602

García-Castro M et al. The spectrum of SCN5A gene mutations in Spanish Brugada syndrome patients.
Rev Esp Cardiol, 2010 Jul , 63 (856-9).

604

Liu JF et al. Mutation-specific risk in two genetic forms of type 3 long QT syndrome.
Am. J. Cardiol., 2010 Jan 15 , 105 (210-3).

606

Hakim P et al. Scn3b knockout mice exhibit abnormal sino-atrial and cardiac conduction properties.
Acta Physiol (Oxf), 2010 Jan , 198 (47-59).

608

609

Tfelt-Hansen J et al. Inherited cardiac diseases caused by mutations in the Nav1.5 sodium channel.
J. Cardiovasc. Electrophysiol., 2010 Jan , 21 (107-15).

612

Saba S et al. Effect of right ventricular versus biventricular pacing on electrical remodeling in the normal heart.
Circ Arrhythm Electrophysiol, 2010 Feb 1 , 3 (79-87).

613

Pfeufer A et al. Genome-wide association study of PR interval.
Nat. Genet., 2010 Feb , 42 (153-9).

615

Nakajima T et al. Selective gamma-ketoaldehyde scavengers protect Nav1.5 from oxidant-induced inactivation.
J. Mol. Cell. Cardiol., 2010 Feb , 48 (352-9).

617

618

Xu L et al. [The cardiac sodium channel gene SCN5A mutation and dilated cardiomyopathy].
Sheng Li Ke Xue Jin Zhan, 2010 Feb , 41 (72-4).

621

Hermida JS et al. Prospective evaluation of the familial prevalence of the brugada syndrome.
Am. J. Cardiol., 2010 Dec 15 , 106 (1758-62).

622

Beyder A et al. Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel.
J. Physiol. (Lond.), 2010 Dec 15 , 588 (4969-85).

624

Cao X et al. Cardiac ion channel safety profiling on the IonWorks Quattro automated patch clamp system.
Assay Drug Dev Technol, 2010 Dec , 8 (766-80).

626

Amin AS et al. SCN5A mutations in atrial fibrillation.
Heart Rhythm, 2010 Dec , 7 (1870-1).

628

Zhang T et al. LQTS gene LOVD database.
, 2010 Aug 31 , ().

630

633

Chopra SS et al. Voltage-gated sodium channels are required for heart development in zebrafish.
Circ. Res., 2010 Apr 30 , 106 (1342-50).

638

Martini B To the editor--the compendium of SCN5A mutations.
Heart Rhythm, 2010 Apr , 7 (e1).

645

Kotta CM et al. Cardiac ion channel gene mutations in Greek long QT syndrome patients.
J. Appl. Genet., 2010 , 51 (515-8).

648

Baines AJ et al. Protein 4.1 and the control of ion channels.
Blood Cells Mol. Dis., 2009 May-Jun , 42 (211-5).

649

Lee HA et al. Cellular mechanism of the QT prolongation induced by sulpiride.
Int. J. Toxicol., 2009 May-Jun , 28 (207-12).

655

Liu M et al. Cardiac Na+ current regulation by pyridine nucleotides.
Circ. Res., 2009 Oct 9 , 105 (737-45).

656

657

Lizotte E et al. Genetic modulation of brugada syndrome by a common polymorphism.
J. Cardiovasc. Electrophysiol., 2009 Oct , 20 (1137-41).

658

Valdivia CR et al. GPD1L links redox state to cardiac excitability by PKC-dependent phosphorylation of the sodium channel SCN5A.
Am. J. Physiol. Heart Circ. Physiol., 2009 Oct , 297 (H1446-52).

660

Amin AS et al. Exercise-induced ECG changes in Brugada syndrome.
Circ Arrhythm Electrophysiol, 2009 Oct , 2 (531-9).

662

Amin AS et al. Cardiac sodium channelopathies.
, 2009 Nov 29 , ().

669

Ruan Y et al. Sodium channel mutations and arrhythmias.
Nat Rev Cardiol, 2009 May , 6 (337-48).

672

673

Miloushev VZ et al. Solution structure of the NaV1.2 C-terminal EF-hand domain.
J. Biol. Chem., 2009 Mar 6 , 284 (6446-54).

675

Aurlien D et al. New SCN5A mutation in a SUDEP victim with idiopathic epilepsy.
, 2009 Mar , 18 (158-60).

677

van Opstal JM et al. Provocation of silence.
, 2009 Mar , 11 (385-7).

681

Hedley PL et al. The genetic basis of Brugada syndrome: A mutation update.
Hum. Mutat., 2009 Jun 16 , ().

682

Lacunza J et al. Heat stroke, an unusual trigger of Brugada electrocardiogram.
, 2009 Jun , 27 (634.e1-3).

685

Watanabe H et al. Mutations in sodium channel beta1- and beta2-subunits associated with atrial fibrillation.
Circ Arrhythm Electrophysiol, 2009 Jun , 2 (268-75).

691

694

Farre C et al. Port-a-patch and patchliner: high fidelity electrophysiology for secondary screening and safety pharmacology.
Comb. Chem. High Throughput Screen., 2009 Jan , 12 (24-37).

699

Saito YA et al. Sodium channel mutation in irritable bowel syndrome: evidence for an ion channelopathy.
Am. J. Physiol. Gastrointest. Liver Physiol., 2009 Feb , 296 (G211-8).

702

Gao R et al. Functional expression of voltage-gated sodium channels Nav1.5 in human breast cancer cell line MDA-MB-231.
J. Huazhong Univ. Sci. Technol. Med. Sci., 2009 Feb , 29 (64-7).

705

Escárcega RO et al. The Brugada syndrome.
Acta Cardiol, 2009 Dec , 64 (795-801).

706

Shi RM et al. [Gene mutation analysis of a Chinese family of congenital long Q-T syndrome type three.]
Zhonghua Er Ke Za Zhi, 2009 Dec , 47 (926-30).

707

Probst V et al. SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome.
Circ Cardiovasc Genet, 2009 Dec , 2 (552-7).

708

Iturralde-Torres P et al. [Genetic in long QT syndromes]
Arch Cardiol Mex, 2009 Dec , 79 Suppl 2 (26-30).

709

Black JA et al. Sodium channel activity modulates multiple functions in microglia.
Glia, 2009 Aug 1 , 57 (1072-81).

712

Wang J et al. Analysis of four novel variants of Nav1.5/SCN5A cloned from the brain.
Neurosci. Res., 2009 Aug , 64 (339-47).

713

Sangawa M et al. Abnormal transmural repolarization process in patients with Brugada syndrome.
Heart Rhythm, 2009 Aug , 6 (1163-9).

714

718

Tfelt-Hansen J et al. [Inherited cardiac diseases caused by Nav1.5 sodium channel mutations]
Ugeskr. Laeg., 2009 Apr 6 , 171 (1261-5).

722

Oliva A et al. SCN5A mutation associated with acute myocardial infarction.
Leg Med (Tokyo), 2009 Apr , 11 Suppl 1 (S206-9).

723

Pfeufer A et al. Common variants at ten loci modulate the QT interval duration in the QTSCD Study.
Nat. Genet., 2009 Apr , 41 (407-14).

724

Newton-Cheh C et al. Common variants at ten loci influence QT interval duration in the QTGEN Study.
Nat. Genet., 2009 Apr , 41 (399-406).

728

Kinoshita-Kikuta E et al. Zn(II)-cyclen polyacrylamide gel electrophoresis for SNP detection.
Methods Mol. Biol., 2009 , 578 (169-82).

730

Lei M et al. Genetic Na+ channelopathies and sinus node dysfunction.
Prog. Biophys. Mol. Biol., 2008 Oct-Nov , 98 (171-8).

731

Zimmer T et al. SCN5A channelopathies--an update on mutations and mechanisms.
Prog. Biophys. Mol. Biol., 2008 Oct-Nov , 98 (120-36).

732

Charpentier F et al. Mouse models of SCN5A-related cardiac arrhythmias.
Prog. Biophys. Mol. Biol., 2008 Oct-Nov , 98 (230-7).

733

Hakim P et al. Scn3b knockout mice exhibit abnormal ventricular electrophysiological properties.
Prog. Biophys. Mol. Biol., 2008 Oct-Nov , 98 (251-66).

734

Hothi SS et al. Arrhythmogenic substrate and its modification by nicorandil in a murine model of long QT type 3 syndrome.
Prog. Biophys. Mol. Biol., 2008 Oct-Nov , 98 (267-80).

735

Wang J et al. New variants of Nav1.5/SCN5A encode Na+ channels in the brain.
J. Neurogenet., 2008 Jan-Mar , 22 (57-75).

744

Makiyama T et al. A novel SCN5A gain-of-function mutation M1875T associated with familial atrial fibrillation.
J. Am. Coll. Cardiol., 2008 Oct 14 , 52 (1326-34).

746

748

749

Otagiri T et al. Cardiac ion channel gene mutations in sudden infant death syndrome.
Pediatr. Res., 2008 Nov , 64 (482-7).

750

752

Remme CA et al. SCN5A overlap syndromes: no end to disease complexity?
Europace, 2008 Nov , 10 (1253-5).

754

Yuan BB et al. [Detection of gene mutations of SCN5A in 7 patients with Brugada syndrome]
Zhonghua Xin Xue Guan Bing Za Zhi, 2008 May , 36 (404-7).

756

Johnson JN et al. Prevalence of early-onset atrial fibrillation in congenital long QT syndrome.
Heart Rhythm, 2008 May , 5 (704-9).

758

Holland KD et al. Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy.
Neurosci. Lett., 2008 Mar 5 , 433 (65-70).

764

Saint DA The cardiac persistent sodium current: an appealing therapeutic target?
Br. J. Pharmacol., 2008 Mar , 153 (1133-42).

766

Mazzone A et al. A mutation in telethonin alters Nav1.5 function.
J. Biol. Chem., 2008 Jun 13 , 283 (16537-44).

772

Crotti L et al. Gene symbol: SCN5A. Disease: Brugada syndrome.
Hum. Genet., 2008 Jun , 123 (542).

773

Crotti L et al. Gene symbol: SCN5A. Disease: Brugada syndrome.
Hum. Genet., 2008 Jun , 123 (542).

774

778

Albert CM et al. Cardiac sodium channel gene variants and sudden cardiac death in women.
Circulation, 2008 Jan 1 , 117 (16-23).

780

Shang LL et al. NF-kappaB-dependent transcriptional regulation of the cardiac scn5a sodium channel by angiotensin II.
Am. J. Physiol., Cell Physiol., 2008 Jan , 294 (C372-9).

781

Ellinor PT et al. Cardiac sodium channel mutation in atrial fibrillation.
, 2008 Jan , 5 (99-105).

785

Wu L et al. Augmentation of late sodium current unmasks the proarrhythmic effects of amiodarone.
Cardiovasc. Res., 2008 Feb 1 , 77 (481-8).

791

792

793

794

795

796

Maltsev VA et al. Molecular identity of the late sodium current in adult dog cardiomyocytes identified by Nav1.5 antisense inhibition.
Am. J. Physiol. Heart Circ. Physiol., 2008 Aug , 295 (H667-76).

799

Darbar D et al. Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation.
Circulation, 2008 Apr 15 , 117 (1927-35).

803

Shan L et al. SCN5A variants in Japanese patients with left ventricular noncompaction and arrhythmia.
Mol. Genet. Metab., 2008 Apr , 93 (468-74).

805

Remme CA et al. Cardiac sodium channel overlap syndromes: different faces of SCN5A mutations.
Trends Cardiovasc. Med., 2008 Apr , 18 (78-87).

808

Crotti L et al. Congenital long QT syndrome.
, 2008 , 3 (18).

813

814

Denjoy I et al. [Brugada syndrome]
, 2007 Jul-Aug , 36 (1109-16).

820

Abriel H Cardiac sodium channel Nav1.5 and its associated proteins.
Arch Mal Coeur Vaiss, 2007 Sep , 100 (787-93).

821

Etheridge SP et al. Long QT syndrome in children in the era of implantable defibrillators.
J. Am. Coll. Cardiol., 2007 Oct 2 , 50 (1335-40).

822

Clancy CE et al. Mutation-specific effects of lidocaine in Brugada syndrome.
Int. J. Cardiol., 2007 Oct 18 , 121 (249-52).

823

824

Chung SK et al. Long QT and Brugada syndrome gene mutations in New Zealand.
, 2007 Oct , 4 (1306-14).

833

Skinner JR et al. Brugada syndrome masquerading as febrile seizures.
Pediatrics, 2007 May , 119 (e1206-11).

834

Wu L et al. Induction of high STAT1 expression in transgenic mice with LQTS and heart failure.
Biochem. Biophys. Res. Commun., 2007 Jun 29 , 358 (449-54).

836

Lei M et al. SCN5A and sinoatrial node pacemaker function.
Cardiovasc. Res., 2007 Jun 1 , 74 (356-65).

841

Koo SH et al. Mutation screening in KCNQ1, HERG, KCNE1, KCNE2 and SCN5A genes in a long QT syndrome family.
Ann. Acad. Med. Singap., 2007 Jun , 36 (394-8).

842

Kiehne N et al. Mutations in the SCN5A gene: evidence for a link between long QT syndrome and sudden death?
Forensic Sci Int Genet, 2007 Jun , 1 (170-4).

845

846

Medeiros-Domingo A et al. SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome.
Circulation, 2007 Jul 10 , 116 (134-42).

848

Ouyang W et al. Isoform-selective effects of isoflurane on voltage-gated Na+ channels.
Anesthesiology, 2007 Jul , 107 (91-8).

849

Shin DJ et al. A novel mutation in the SCN5A gene is associated with Brugada syndrome.
Life Sci., 2007 Jan 30 , 80 (716-24).

850

Tian XL et al. Optical mapping of ventricular arrhythmias in LQTS mice with SCN5A mutation N1325S.
Biochem. Biophys. Res. Commun., 2007 Jan 26 , 352 (879-83).

851

Wang DW et al. Cardiac sodium channel dysfunction in sudden infant death syndrome.
Circulation, 2007 Jan 23 , 115 (368-76).

852

Arnestad M et al. Prevalence of long-QT syndrome gene variants in sudden infant death syndrome.
Circulation, 2007 Jan 23 , 115 (361-7).

853

Yong SL et al. Characterization of the cardiac sodium channel SCN5A mutation, N1325S, in single murine ventricular myocytes.
Biochem. Biophys. Res. Commun., 2007 Jan 12 , 352 (378-83).

856

857

Vecchietti S et al. In silico assessment of Y1795C and Y1795H SCN5A mutations: implication for inherited arrhythmogenic syndromes.
Am. J. Physiol. Heart Circ. Physiol., 2007 Jan , 292 (H56-65).

859

Huang X et al. [Expression and function of voltage-gated Na+ channel isoforms in rat sinoatrial node]
Nan Fang Yi Ke Da Xue Xue Bao, 2007 Jan , 27 (52-5).

860

Pfahnl AE et al. A sodium channel pore mutation causing Brugada syndrome.
Heart Rhythm, 2007 Jan , 4 (46-53).

861

Chen LY et al. A common polymorphism in SCN5A is associated with lone atrial fibrillation.
Clin. Pharmacol. Ther., 2007 Jan , 81 (35-41).