Channelpedia

ClvC7 Channel

123 automatically matched literature references

3

Barrallo-Gimeno A et al. Regulatory-auxiliary subunits of CLC chloride channel-transport proteins.
J. Physiol. (Lond.), 2015 Sep 15 , 593 (4111-27).

4

Kurita T et al. The ClC-7 Chloride Channel Is Downregulated by Hypoosmotic Stress in Human Chondrocytes.
Mol. Pharmacol., 2015 Jul , 88 (113-20).

5

Capurro V et al. Functional analysis of acid-activated Cl⁻ channels: properties and mechanisms of regulation.
Biochim. Biophys. Acta, 2015 Jan , 1848 (105-14).

6

Wen X et al. Dental and Cranial Pathologies in Mice Lacking the Cl(-) /H(+) -Exchanger ClC-7.
Anat Rec (Hoboken), 2015 Aug , 298 (1502-8).

8

Li X et al. [Genetic analysis of a novel mutation resulting in autosomal dominant osteopetrosis II].
Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2014 Oct , 31 (612-4).

18

Duan X Ion Channels, Channelopathies, and Tooth Formation.
J. Dent. Res., 2013 Sep 27 , ().

20

Duan X et al. Odontoblast-like MDPC-23 cells function as odontoclasts with RANKL/M-CSF induction.
Arch. Oral Biol., 2013 Mar , 58 (272-8).

21

Ishida Y et al. A model of lysosomal pH regulation.
J. Gen. Physiol., 2013 Jun , 141 (705-20).

23

Ochoa-de la Paz LD et al. Characterization of an outward rectifying chloride current of Xenopus tropicalis oocytes.
Biochim. Biophys. Acta, 2013 Aug , 1828 (1743-53).

24

Bollerslev J et al. Autosomal dominant osteopetrosis revisited: lessons from recent studies.
Eur. J. Endocrinol., 2013 Aug , 169 (R39-57).

25

Szewczyk KA et al. Distinctive subdomains in the resorbing surface of osteoclasts.
PLoS ONE, 2013 , 8 (e60285).

26

Zanardi I et al. An optical assay of the transport activity of ClC-7.
Sci Rep, 2013 , 3 (1231).

31

Xue Y et al. Report of two Chinese patients suffering from CLCN7-related osteopetrosis and root dysplasia.
J Craniomaxillofac Surg, 2012 Jul , 40 (416-20).

32

Stauber T et al. Cell biology and physiology of CLC chloride channels and transporters.
Compr Physiol, 2012 Jul , 2 (1701-44).

36

Mindell JA Lysosomal acidification mechanisms.
Annu. Rev. Physiol., 2012 , 74 (69-86).

38

Majumdar A et al. Degradation of Alzheimer's amyloid fibrils by microglia requires delivery of ClC-7 to lysosomes.
Mol. Biol. Cell, 2011 May 15 , 22 (1664-76).

42

Stauber T et al. Sorting motifs of the endosomal/lysosomal CLC chloride transporters.
J. Biol. Chem., 2010 Nov 5 , 285 (34537-48).

45

Steinberg BE et al. A cation counterflux supports lysosomal acidification.
J. Cell Biol., 2010 Jun 28 , 189 (1171-86).

46

47

Cao L et al. Chloride channels and transporters in human corneal epithelium.
Exp. Eye Res., 2010 Jun , 90 (771-9).

50

Wartosch L et al. A role for chloride transport in lysosomal protein degradation.
Autophagy, 2010 Jan , 6 (158-9).

51

Pressey SN et al. Distinct neuropathologic phenotypes after disrupting the chloride transport proteins ClC-6 or ClC-7/Ostm1.
J. Neuropathol. Exp. Neurol., 2010 Dec , 69 (1228-46).

52

Tian M et al. Chloride channels regulate chondrogenesis in chicken mandibular mesenchymal cells.
Arch. Oral Biol., 2010 Dec , 55 (938-45).

53

Phadke SR et al. Novel mutations in Indian patients with autosomal recessive infantile malignant osteopetrosis.
Indian J. Med. Res., 2010 Apr , 131 (508-14).

56

Plans V et al. Physiological roles of CLC Cl(-)/H (+) exchangers in renal proximal tubules.
Pflugers Arch., 2009 May , 458 (23-37).

58

Zhao Q et al. CLC-7: a potential therapeutic target for the treatment of osteoporosis and neurodegeneration.
Biochem. Biophys. Res. Commun., 2009 Jul 3 , 384 (277-9).

59

Henriksen K et al. Characterization of acid flux in osteoclasts from patients harboring a G215R mutation in ClC-7.
Biochem. Biophys. Res. Commun., 2009 Jan 23 , 378 (804-9).

61

Besbas N et al. A novel CLCN7 mutation resulting in a most severe form of autosomal recessive osteopetrosis.
Eur. J. Pediatr., 2009 Dec , 168 (1449-54).

62

Mazzolari E et al. A single-center experience in 20 patients with infantile malignant osteopetrosis.
Am. J. Hematol., 2009 Aug , 84 (473-9).

64

Braun AP Identification of ClC-7 as a major pathway for Cl- movement in lysosomes.
Channels (Austin), 2008 Sep-Oct , 2 (309).

65

Hou J et al. ClC chloride channels in tooth germ and odontoblast-like MDPC-23 cells.
Arch. Oral Biol., 2008 Sep , 53 (874-8).

66

Henriksen K et al. Ion transporters involved in acidification of the resorption lacuna in osteoclasts.
Calcif. Tissue Int., 2008 Sep , 83 (230-42).

67

Nijenhuis T et al. Bone resorption inhibitor alendronate normalizes the reduced bone thickness of TRPV5(-/-) mice.
J. Bone Miner. Res., 2008 Nov , 23 (1815-24).

69

71

Neutzsky-Wulff AV et al. Characterization of the bone phenotype in ClC-7-deficient mice.
Calcif. Tissue Int., 2008 Dec , 83 (425-37).

73

Nielsen RH et al. Dissolution of the inorganic phase of bone leading to release of calcium regulates osteoclast survival.
Biochem. Biophys. Res. Commun., 2007 Sep 7 , 360 (834-9).

76

77

Jentsch TJ Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters.
J. Physiol. (Lond.), 2007 Feb 1 , 578 (633-40).

81

84

86

Schaller S et al. The role of chloride channels in osteoclasts: ClC-7 as a target for osteoporosis treatment.
Drug News Perspect., 2005 Oct , 18 (489-95).

87

Pettersson U et al. Polymorphisms of the CLCN7 gene are associated with BMD in women.
J. Bone Miner. Res., 2005 Nov , 20 (1960-7).

89

Campos-Xavier AB et al. Intrafamilial phenotypic variability of osteopetrosis due to chloride channel 7 (CLCN7) mutations.
Am. J. Med. Genet. A, 2005 Mar 1 , 133A (216-8).

90

Ernest NJ et al. Relative contribution of chloride channels and transporters to regulatory volume decrease in human glioma cells.
Am. J. Physiol., Cell Physiol., 2005 Jun , 288 (C1451-60).

92

93

Mummery JL et al. Expression of the chloride channel CLC-K in human airway epithelial cells.
Can. J. Physiol. Pharmacol., 2005 Dec , 83 (1123-8).

99

Blair HC et al. Recent advances in osteoclast biology and pathological bone resorption.
Histol. Histopathol., 2004 Jan , 19 (189-99).

100

Davies N et al. Chloride channel gene expression in the rabbit cornea.
Mol. Vis., 2004 Dec 30 , 10 (1028-37).

103

Furukawa T [Various functions of ClC-type Cl- channels]
Nippon Yakurigaku Zasshi, 2003 Nov , 122 (375-83).

105

Olsen ML et al. Expression of voltage-gated chloride channels in human glioma cells.
J. Neurosci., 2003 Jul 2 , 23 (5572-82).

106

Campos-Xavier AB et al. Chloride channel 7 (CLCN7) gene mutations in intermediate autosomal recessive osteopetrosis.
Hum. Genet., 2003 Feb , 112 (186-9).

107

Waguespack SG et al. Chloride channel 7 (ClCN7) gene mutations and autosomal dominant osteopetrosis, type II.
J. Bone Miner. Res., 2003 Aug , 18 (1513-8).

108

Kulka M et al. Mast cells express chloride channels of the ClC family.
Inflamm. Res., 2002 Sep , 51 (451-6).

109

Diewald L et al. Activation by acidic pH of CLC-7 expressed in oocytes from Xenopus laevis.
Biochem. Biophys. Res. Commun., 2002 Feb 22 , 291 (421-4).

110

111

Alper SL Genetic diseases of acid-base transporters.
Annu. Rev. Physiol., 2002 , 64 (899-923).

115

Kornak U et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man.
Cell, 2001 Jan 26 , 104 (205-15).

118

119

Kornak U et al. Complete genomic structure of the CLCN6 and CLCN7 putative chloride channel genes(1).
Biochim. Biophys. Acta, 1999 Oct 6 , 1447 (100-6).

120

Thakker RV The role of renal chloride channel mutations in kidney stone disease and nephrocalcinosis.
Curr. Opin. Nephrol. Hypertens., 1998 Jul , 7 (385-8).

121

Eggermont J The exon-intron architecture of human chloride channel genes is not conserved.
Biochim. Biophys. Acta, 1998 Apr 29 , 1397 (156-60).

123