User Visitor Login
English only
EPFL > FSV > BBP > Channelpedia
Ion channels
Logged in as a Visitor.

Crystal structure and mechanism of a calcium-gated potassium channel.

Youxing Jiang, Alice Lee, Jiayun Chen, Martine Cadene, Brian T Chait, Roderick MacKinnon

Nature, 2002 May 30 , 417, 515-22

Ion channels exhibit two essential biophysical properties; that is, selective ion conduction, and the ability to gate-open in response to an appropriate stimulus. Two general categories of ion channel gating are defined by the initiating stimulus: ligand binding (neurotransmitter- or second-messenger-gated channels) or membrane voltage (voltage-gated channels). Here we present the structural basis of ligand gating in a K(+) channel that opens in response to intracellular Ca(2+). We have cloned, expressed, analysed electrical properties, and determined the crystal structure of a K(+) channel (MthK) from Methanobacterium thermoautotrophicum in the Ca(2+)-bound, opened state. Eight RCK domains (regulators of K(+) conductance) form a gating ring at the intracellular membrane surface. The gating ring uses the free energy of Ca(2+) binding in a simple manner to perform mechanical work to open the pore.