User Visitor Login
/images/graph_sv_i.gif
English only
EPFL > FSV > BBP > Channelpedia
Ion channels
References
Reports
SEARCH IN WIKI
Logged in as a Visitor.

Pleiotropic effects of a disrupted K+ channel gene: reduced body weight, impaired motor skill and muscle contraction, but no seizures.

C S Ho, R W Grange, R H Joho

Proc. Natl. Acad. Sci. U.S.A., 1997 Feb 18 , 94, 1533-8

To investigate the roles of K+ channels in the regulation and fine-tuning of cellular excitability, we generated a mutant mouse carrying a disrupted gene for the fast activating, voltage-gated K+ channel Kv3.1. Kv3.1-/- mice are viable and fertile but have significantly reduced body weights compared with their Kv3.1+/- littermates. Wild-type, heterozygous, and homozygous Kv3.1 channel-deficient mice exhibit similar spontaneous locomotor and exploratory activity. In a test for coordinated motor skill, however, homozygous Kv3.1-/- mice perform significantly worse than their heterozygous Kv3.1+/- or wild-type littermates. Both fast and slow skeletal muscles of Kv3.1-/- mice are slower to reach peak force and to relax after contraction, consequently leading to tetanic responses at lower stimulation frequencies. Both mutant muscles generate significantly smaller contractile forces during a single twitch and during tetanic conditions. Although Kv3.1-/- mutants exhibit a normal auditory frequency range, they show significant differences in their acoustic startle responses. Contrary to expectation, homozygous Kv3.1-/- mice do not have increased spontaneous seizure activity.

http://www.ncbi.nlm.nih.gov/pubmed/9037088