User Visitor Login
/images/graph_sv_i.gif
English only
EPFL > FSV > BBP > Channelpedia
Ion channels
References
Reports
SEARCH IN WIKI
Logged in as a Visitor.

Functional consequences of Kir2.1/Kir2.2 subunit heteromerization.

Brian K Panama, Meredith McLerie, Anatoli N Lopatin

Pflugers Arch., 2010 Oct , 460, 839-49

Kir2 subunits form channels that underlie classical strongly inwardly rectifying potassium currents. While homomeric Kir2 channels display a number of distinct and physiologically important properties, the functional properties of heteromeric Kir2 assemblies, as well as the stoichiometries and the arrangements of Kir2 subunits in native channels, remain largely unknown. Therefore, we have implemented a concatemeric approach, whereby all four cloned Kir2 subunits were linked in tandem, in order to study the effects of Kir2.1 and Kir2.2 heteromerization on properties of the resulting channels. Kir2.2 subunits contributed stronger to single-channel conductance than Kir2.1 subunits, and channels containing two or more Kir2.2 subunits displayed conductances indistinguishable from that of a Kir2.2 homomeric channel. In contrast, single-channel kinetics was a more discriminating property. The open times were significantly shorter in Kir2.2 channels compared with Kir2.1 channels and decreased nearly proportionally to the number of Kir2.2 subunits in the heteromeric channel. Similarly, the sensitivity to block by barium also depended on the proportions of Kir2.1 to Kir2.2 subunits. Overall, the results showed that Kir2.1 and Kir2.2 subunits exert neither a dominant nor an anomalous effect on any of the properties of heteromeric channels. The data highlight opportunities and challenges of using differential properties of Kir2 channels in deciphering the subunit composition of native inwardly rectifying potassium currents.

http://www.ncbi.nlm.nih.gov/pubmed/20676672