User Visitor Login
/images/graph_sv_i.gif
English only
EPFL > FSV > BBP > Channelpedia
Ion channels
References
Reports
SEARCH IN WIKI
Logged in as a Visitor.

BDNF profoundly and specifically increases KCNQ4 expression in neurons derived from embryonic stem cells.

Erin K Purcell, Amy Yang, Liqian Liu, J Matthew Velkey, Marti M Morales, R Keith Duncan

Stem Cell Res, 2013 Jan , 10, 29-35

Neurons resembling the spiral ganglion neurons (SGNs) of the auditory nerve can be generated from embryonic stem cells through induced overexpression of the transcription factor Neurogenin-1 (Neurog1). While recapitulating this developmental pathway produces glutamatergic, bipolar neurons reminiscent of SGNs, these neurons are functionally immature, being characterized by a depolarized resting potential and limited excitability. We explored the effects of two neurotrophins known to be present in the inner ear, brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), on the electrophysiology of neurons following Neurog1 induction. Our data reveal a significant reduction in resting membrane potential (RMP) following neurotrophin exposure, with BDNF producing a more robust effect than NT-3. This effect was accompanied by a profound and specific upregulation of the KCNQ4 subtype, where a 9-fold increase was observed with quantitative PCR. The other neuronally expressed KCNQ subtypes (2, 3, and 5) exhibited upregulation which was 3-fold or less in magnitude. Quantitative immunohistochemistry confirmed the increase in KCNQ4 expression at the protein level. The present data show a novel link between BDNF and KCNQ4 expression, yielding insight into the restricted expression pattern of a channel known to play special roles in setting the resting potential of auditory cells and in the etiology of progressive high-frequency hearing loss.

http://www.ncbi.nlm.nih.gov/pubmed/23089626