User Visitor Login
/images/graph_sv_i.gif
English only
EPFL > FSV > BBP > Channelpedia
Ion channels
References
Reports
SEARCH IN WIKI
Logged in as a Visitor.

Absence of regulation of the T-type calcium current by Cav1.1, beta1a and gamma1 dihydropyridine receptor subunits in skeletal muscle cells.

Caroline Strube

Pflugers Arch., 2008 Feb , 455, 921-7

The subunit structure of low voltage activated T-type Ca2+ channels is still unknown. Co-expression of dihydropyridine receptor (DHPR) auxiliary subunits with T-type alpha1 subunits in heterologous systems has produced conflicting results. In developing foetal skeletal muscle fibres which abundantly express DHPR subunits, Cav3.2 (alpha1H) subunits are believed to underlie T-type calcium currents which disappear 2 to 3 weeks after birth. Therefore, a possible regulation of foetal skeletal muscle T-type Ca2+ channels by DHPR subunits was investigated in freshly isolated foetal skeletal muscle using knockout mice, which provide a powerful tool to address this question. The possible involvement of alpha1S (Cav1.1), beta1 and gamma1 DHPR subunits was tested using dysgenic (alpha1S-null), beta1a and gamma1 knockout mice. The results show that the absence of alpha1S, beta1 or gamma1 DHPR subunits does not significantly affect the electrophysiological properties of T-type Ca2+ currents in skeletal muscle, suggesting that (1) native Cav3.2 is not regulated by beta1 or gamma1 DHPR subunits; (2) T-type and L-type currents have distinct and not interchangeable roles.

http://www.ncbi.nlm.nih.gov/pubmed/17906876