User Visitor Login
/images/graph_sv_i.gif
English only
EPFL > FSV > BBP > Channelpedia
Ion channels
References
Reports
SEARCH IN WIKI
Logged in as a Visitor.

Molecular constituents of maxi KCa channels in human coronary smooth muscle: predominant alpha + beta subunit complexes.

Y Tanaka, P Meera, M Song, H G Knaus, L Toro

J. Physiol. (Lond.), 1997 Aug 1 , 502 ( Pt 3), 545-57

1. Human large-conductance voltage- and calcium-sensitive K+ (maxi KCa) channels are composed of at least two subunits: the pore-forming subunit, alpha, and a modulatory subunit, beta. Expression of the beta subunit induces dramatic changes in alpha subunit function. It increases the apparent Ca2+ sensitivity and it allows dehydrosoyasaponin I (DHS-I) to upregulate the channel. 2. The functional coupling of maxi KCa channel alpha and beta subunits in freshly dissociated human coronary smooth muscle cells was assessed. To distinguish maxi KCa currents modulated by the beta subunit, we examined (a) their apparent Ca2+ sensitivity, as judged from the voltage necessary to half-activate the channel (V1/2), and (b) their activation by DHS-I. 3. In patches with unitary currents, the majority of channels were half-activated near -85 mV at 18 microM Ca2+, a value similar to that obtained when the human KCa channel alpha (HSLO) and beta (HKV,Ca beta) subunits are co-expressed. A small number of channels half-activated around 0 mV, suggesting the activity of the alpha subunit alone. 4. The properties of macroscopic currents were consistent with the view that most pore-forming alpha subunits were coupled to beta subunits, since the majority of currents had values for V1/2 near to -90 mV, and currents were potentiated by DHS-I. 5. We conclude that in human coronary artery smooth muscle cells, most maxi KCa channels are composed of alpha and beta subunits. The higher Ca2+ sensitivity of maxi KCa channels, resulting from their coupling to beta subunits, suggests an important role of this channel in regulating coronary tone. Their massive activation by micromolar Ca2+ concentrations may lead to a large hyperpolarization causing profound changes in coronary blood flow and cardiac function.

http://www.ncbi.nlm.nih.gov/pubmed/9279807