User Visitor Login
/images/graph_sv_i.gif
English only
EPFL > FSV > BBP > Channelpedia
Ion channels
References
Reports
SEARCH IN WIKI
Logged in as a Visitor.

All references automaticaly matched for Slo2


93. Pubmed Budelli G. et al. SLO2 Channels Are Inhibited By All Divalent Cations That Activate SLO1 K+ Channels. J. Biol. Chem., 2016 Jan 28 , ().
92. Pubmed Ferron L. et al. Fragile X mental retardation protein controls ion channel expression and activity. J. Physiol. (Lond.), 2016 Feb 10 , ().
91. Pubmed Bansal V. et al. Na(+) -activated K(+) channels in rat supraoptic neurons. J. Neuroendocrinol., 2016 Apr 19 , ().
90. Pubmed Gururaj S. et al. Slack sodium-activated potassium channel membrane expression requires p38 mitogen-activated protein kinase phosphorylation. Neuropharmacology, 2016 Apr , 103 (279-89).
89. Pubmed Suzuki T. et al. Hydrophobic interactions between the S5 segment and the pore helix stabilizes the closed state of Slo2.1 potassium channels. Biochim. Biophys. Acta, 2016 Apr , 1858 (783-92).
88. Pubmed Huffman J. et al. Rare and low-frequency variants and their association with plasma levels of fibrinogen, FVII, FVIII, and vWF. Blood, 2015 Sep 10 , 126 (e19-29).
87. Pubmed Ohba C. et al. De novo KCNT1 mutations in early-onset epileptic encephalopathy. Epilepsia, 2015 Sep , 56 (e121-8).
86. Pubmed Møller R. et al. Mutations in KCNT1 cause a spectrum of focal epilepsies. Epilepsia, 2015 Sep , 56 (e114-20).
85. Pubmed Hite R. et al. Cryo-electron microscopy structure of the Slo2.2 Na(+)-activated K(+) channel. Nature, 2015 Oct 5 , ().
84. Pubmed Thomson S. et al. Identification of the Intracellular Na+ Sensor in Slo2.1 Potassium Channels. J. Biol. Chem., 2015 Jun 5 , 290 (14528-35).
83. Pubmed Boillot M. et al. Genetic models of focal epilepsies. J. Neurosci. Methods, 2015 Jun 11 , ().
82. Pubmed Tomasello D. et al. Transcriptional Regulation of the Sodium-activated Potassium Channel SLICK (KCNT2) Promoter by Nuclear Factor-κB. J. Biol. Chem., 2015 Jul 24 , 290 (18575-83).
81. Pubmed Bausch A. et al. The sodium-activated potassium channel Slack is required for optimal cognitive flexibility in mice. Learn. Mem., 2015 Jul , 22 (323-35).
80. Pubmed Lu R. et al. Slack channels expressed in sensory neurons control neuropathic pain in mice. J. Neurosci., 2015 Jan 21 , 35 (1125-35).
79. Pubmed Mikati M. et al. Quinidine in the treatment of KCNT1-positive epilepsies. Ann. Neurol., 2015 Dec , 78 (995-9).
78. Pubmed Rizzetto R. et al. Late sodium current (INaL) in pancreatic β-cells. Pflugers Arch., 2015 Aug , 467 (1757-68).
77. Pubmed Bearden D. et al. Targeted treatment of migrating partial seizures of infancy with quinidine. Ann. Neurol., 2014 Sep , 76 (457-61).
76. Pubmed Martin H. et al. Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Hum. Mol. Genet., 2014 Jun 15 , 23 (3200-11).
75. Pubmed Jia S. et al. Zebrafish Cacna1fa is required for cone photoreceptor function and synaptic ribbon formation. Hum. Mol. Genet., 2014 Jun 1 , 23 (2981-94).
74. Pubmed Brager D. et al. Channelopathies and Dendritic Dysfunction in Fragile X syndrome. Brain Res. Bull., 2014 Jan 23 , ().
73. Pubmed Vanderver A. et al. Identification of a novel de novo p.Phe932Ile KCNT1 mutation in a patient with leukoencephalopathy and severe epilepsy. Pediatr. Neurol., 2014 Jan , 50 (112-4).
72. Pubmed De Filippo M. et al. Lack of pathogenic mutations in six patients with MMPSI. Epilepsy Res., 2014 Feb , 108 (340-4).
71. Pubmed Qu J. et al. Gene-wide tagging study of the association between KCNT1 polymorphisms and the susceptibility and efficacy of genetic generalized epilepsy in Chinese population. CNS Neurosci Ther, 2014 Feb , 20 (140-6).
70. Pubmed Kim G. et al. Human slack potassium channel mutations increase positive cooperativity between individual channels. Cell Rep, 2014 Dec 11 , 9 (1661-72).
69. Pubmed Milligan C. et al. KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann. Neurol., 2014 Apr , 75 (581-90).
68. Pubmed Fleming M. et al. Use of label-free optical biosensors to detect modulation of potassium channels by G-protein coupled receptors. J Vis Exp, 2014 , (e51307).
67. Pubmed Tejada M. et al. Cell volume changes regulate slick (Slo2.1), but not slack (Slo2.2) K+ channels. PLoS ONE, 2014 , 9 (e110833).
66. Pubmed Juang J. et al. Disease-targeted sequencing of ion channel genes identifies de novo mutations in patients with non-familial Brugada syndrome. Sci Rep, 2014 , 4 (6733).
65. Pubmed Baulac S. et al. Genetics advances in autosomal dominant focal epilepsies: focus on DEPDC5. Prog. Brain Res., 2014 , 213 (123-39).
64. Pubmed Liu P. et al. SLO-2 potassium channel is an important regulator of neurotransmitter release in Caenorhabditis elegans. Nat Commun, 2014 , 5 (5155).
63. Pubmed Ishii A. et al. A recurrent KCNT1 mutation in two sporadic cases with malignant migrating partial seizures in infancy. Gene, 2013 Sep 10 , ().
62. Pubmed Gadotti V. et al. TMEM16C cuts pain no SLACK. Nat. Neurosci., 2013 Sep , 16 (1165-6).
61. Pubmed Huang F. et al. TMEM16C facilitates Na(+)-activated K+ currents in rat sensory neurons and regulates pain processing. Nat. Neurosci., 2013 Sep , 16 (1284-90).
60. Pubmed Lacaze E. et al. De novo 15q13.3 microdeletion with cryptogenic West syndrome. Am. J. Med. Genet. A, 2013 Oct , 161 (2582-7).
59. Pubmed Garg P. et al. Structural basis of ion permeation gating in Slo2.1 K+ channels. J. Gen. Physiol., 2013 Nov , 142 (523-42).
58. Pubmed Zhang Z. et al. SLO-2 isoforms with unique Ca ( 2+) - and voltage-dependence characteristics confer sensitivity to hypoxia in C. elegans. Channels (Austin), 2013 May 1 , 7 (194-205).
57. Pubmed Cervantes B. et al. Identity, expression and functional role of the sodium-activated potassium current in vestibular ganglion afferent neurons. Neuroscience, 2013 Jun 14 , 240 (163-75).
56. Pubmed Liu J. et al. Distinct sensitivity of slo1 channel proteins to ethanol. Mol. Pharmacol., 2013 Jan , 83 (235-44).
55. Pubmed Dhamija R. et al. Novel de novo SCN2A mutation in a child with migrating focal seizures of infancy. Pediatr. Neurol., 2013 Dec , 49 (486-8).
54. Pubmed Hayashi M. et al. Molecular basis of potassium channels in pancreatic duct epithelial cells. Channels (Austin), 2013 Aug 20 , 7 ().
53. Pubmed Versari S. et al. The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment. FASEB J., 2013 Aug 2 , ().
52. Pubmed Zhang Y. et al. Regulation of neuronal excitability by interaction of fragile X mental retardation protein with slack potassium channels. J. Neurosci., 2012 Oct 31 , 32 (15318-27).
51. Pubmed Barcia G. et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat. Genet., 2012 Nov , 44 (1255-9).
50. Pubmed Heron S. et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet., 2012 Nov , 44 (1188-90).
49. Pubmed Garg P. et al. Structure-activity relationship of fenamates as Slo2.1 channel activators. Mol. Pharmacol., 2012 Nov , 82 (795-802).
48. Pubmed Yan Y. et al. Expression, purification and functional reconstitution of slack sodium-activated potassium channels. J. Membr. Biol., 2012 Nov , 245 (667-74).
47. Pubmed Igelström K. et al. Is Slack an Intrinsic Seizure Terminator? , 2012 May 29 , ().
46. Pubmed Biton B. et al. The antipsychotic drug loxapine is an opener of the sodium-activated potassium channel slack (Slo2.2). J. Pharmacol. Exp. Ther., 2012 Mar , 340 (706-15).
45. Pubmed de los Angeles Tejada M. et al. PIP₂ modulation of Slick and Slack K⁺ channels. Biochem. Biophys. Res. Commun., 2012 Jul 27 , 424 (208-13).
44. Pubmed Hayashi M. et al. An intermediate-conductance Ca2+-activated K+ channel is important for secretion in pancreatic duct cells. Am. J. Physiol., Cell Physiol., 2012 Jul 15 , 303 (C151-9).
43. Pubmed Li X. et al. Extracellular chloride regulation of Kv2.1, contributor to the major outward Kv current in mammalian outer hair cells. Am. J. Physiol., Cell Physiol., 2012 Jan , 302 (C296-306).
42. Pubmed Dinardo M. et al. Splicing of the rSlo gene affects the molecular composition and drug response of Ca2+-activated K+ channels in skeletal muscle. PLoS ONE, 2012 , 7 (e40235).
41. Pubmed Poulsen A. et al. Neuronal fast activating and meningeal silent modulatory BK channel splice variants cloned from rat. Pflugers Arch., 2011 Jan , 461 (65-75).
40. Pubmed Wojtovich A. et al. SLO-2 is cytoprotective and contributes to mitochondrial potassium transport. PLoS ONE, 2011 , 6 (e28287).
39. Pubmed Nuwer M. et al. PKA-Induced Internalization of Slack KNa Channels Produces Dorsal Root Ganglion Neuron Hyperexcitability. J. Neurosci., 2010 Oct 20 , 30 (14165-72).
38. Pubmed Jayasinghe I. et al. A new twist in cardiac muscle: dislocated and helicoid arrangements of myofibrillar z-disks in mammalian ventricular myocytes. J. Mol. Cell. Cardiol., 2010 May , 48 (964-71).
37. Pubmed Dai L. et al. Activation of Slo2.1 channels by niflumic acid. J. Gen. Physiol., 2010 Mar , 135 (275-95).
36. Pubmed Zhang Z. et al. The RCK2 domain uses a coordination site present in Kir channels to confer sodium sensitivity to Slo2.2 channels. J. Neurosci., 2010 Jun 2 , 30 (7554-62).
35. Pubmed Lu S. et al. The slack sodium-activated potassium channel provides a major outward current in olfactory neurons of Kv1.3-/- super-smeller mice. J. Neurophysiol., 2010 Jun , 103 (3311-9).
34. Pubmed Brown M. et al. Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack. Nat. Neurosci., 2010 Jul , 13 (819-21).
33. Pubmed Nuwer M. et al. cAMP-dependent kinase does not modulate the Slack sodium-activated potassium channel. Neuropharmacology, 2009 Sep , 57 (219-26).
32. Pubmed Budelli G. et al. Na+-activated K+ channels express a large delayed outward current in neurons during normal physiology. Nat. Neurosci., 2009 Jun , 12 (745-50).
31. Pubmed Chen H. et al. The N-terminal domain of Slack determines the formation and trafficking of Slick/Slack heteromeric sodium-activated potassium channels. J. Neurosci., 2009 Apr 29 , 29 (5654-65).
30. Pubmed Tamsett T. et al. NAD+ activates KNa channels in dorsal root ganglion neurons. J. Neurosci., 2009 Apr 22 , 29 (5127-34).
29. Pubmed Fleming M. et al. Use of optical biosensors to detect modulation of Slack potassium channels by G protein-coupled receptors. J. Recept. Signal Transduct. Res., 2009 , 29 (173-81).
28. Pubmed Brown M. et al. Amino-termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation. J. Physiol. (Lond.), 2008 Nov 1 , 586 (5161-79).
27. Pubmed Ruffin V. et al. The sodium-activated potassium channel Slack is modulated by hypercapnia and acidosis. Neuroscience, 2008 Jan 24 , 151 (410-8).
26. Pubmed Gao S. et al. Slack and Slick KNa channels are required for the depolarizing afterpotential of acutely isolated, medium diameter rat dorsal root ganglion neurons. Acta Pharmacol. Sin., 2008 Aug , 29 (899-905).
25. Pubmed Wallén P. et al. Sodium-dependent potassium channels of a Slack-like subtype contribute to the slow afterhyperpolarization in lamprey spinal neurons. J. Physiol. (Lond.), 2007 Nov 15 , 585 (75-90).
24. Pubmed Yang B. et al. Slack and Slick K(Na) channels regulate the accuracy of timing of auditory neurons. J. Neurosci., 2007 Mar 7 , 27 (2617-27).
23. Pubmed Nanou E. et al. A postsynaptic negative feedback mediated by coupling between AMPA receptors and Na+-activated K+ channels in spinal cord neurones. Eur. J. Neurosci., 2007 Jan , 25 (445-50).
22. Pubmed Berg A. et al. TrpC3/C7 and Slo2.1 are molecular targets for metabotropic glutamate receptor signaling in rat striatal cholinergic interneurons. J. Neurosci., 2007 Aug 15 , 27 (8845-56).
21. Pubmed Yang B. et al. Pharmacological activation and inhibition of Slack (Slo2.2) channels. Neuropharmacology, 2006 Sep , 51 (896-906).
20. Pubmed Santi C. et al. Opposite regulation of Slick and Slack K+ channels by neuromodulators. J. Neurosci., 2006 May 10 , 26 (5059-68).
19. Pubmed Paulais M. et al. A Na+- and Cl- -activated K+ channel in the thick ascending limb of mouse kidney. J. Gen. Physiol., 2006 Feb , 127 (205-15).
18. Pubmed Sugino K. et al. Electrical properties and fusion dynamics of in vitro membrane vesicles derived from separate parts of the contractile vacuole complex of Paramecium multimicronucleatum. J. Exp. Biol., 2005 Oct , 208 (3957-69).
17. Pubmed Bhattacharjee A. et al. Localization of the Na+-activated K+ channel Slick in the rat central nervous system. J. Comp. Neurol., 2005 Mar 28 , 484 (80-92).
16. Pubmed Bhattacharjee A. et al. For K+ channels, Na+ is the new Ca2+. Trends Neurosci., 2005 Aug , 28 (422-8).
15. Pubmed Kaczmarek L. et al. Regulation of the timing of MNTB neurons by short-term and long-term modulation of potassium channels. Hear. Res., 2005 Aug , 206 (133-45).
14. Pubmed Zhang L. et al. Direct binding of estradiol enhances Slack (sequence like a calcium-activated potassium channel) channels' activity. Neuroscience, 2005 , 131 (275-82).
13. Pubmed Uchino S. et al. Slo2 sodium-activated K+ channels bind to the PDZ domain of PSD-95. Biochem. Biophys. Res. Commun., 2003 Oct 31 , 310 (1140-7).
12. Pubmed Yuan A. et al. The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron, 2003 Mar 6 , 37 (765-73).
11. Pubmed Dryer S. et al. Molecular identification of the Na+-activated K+ channel. Neuron, 2003 Mar 6 , 37 (727-8).
10. Pubmed Wang S. et al. The cytoplasmic tail of large conductance, voltage- and Ca2+-activated K+ (MaxiK) channel is necessary for its cell surface expression. J. Biol. Chem., 2003 Jan 24 , 278 (2713-22).
9. Pubmed Bhattacharjee A. et al. Slick (Slo2.1), a rapidly-gating sodium-activated potassium channel inhibited by ATP. J. Neurosci., 2003 Dec 17 , 23 (11681-91).
8. Pubmed Ji G. et al. Stretch-induced calcium release in smooth muscle. J. Gen. Physiol., 2002 Jun , 119 (533-44).
7. Pubmed Bhattacharjee A. et al. Localization of the Slack potassium channel in the rat central nervous system. J. Comp. Neurol., 2002 Dec 16 , 454 (241-54).
6. Pubmed Hamill O. et al. Molecular basis of mechanotransduction in living cells. Physiol. Rev., 2001 Apr , 81 (685-740).
5. Pubmed Ha T. et al. Functional characteristics of two BKCa channel variants differentially expressed in rat brain tissues. Eur. J. Biochem., 2000 Feb , 267 (910-8).
4. Pubmed Kunze W. et al. Contractile activity in intestinal muscle evokes action potential discharge in guinea-pig myenteric neurons. J. Physiol. (Lond.), 1999 Jun 1 , 517 ( Pt 2) (547-61).
3. Pubmed Joiner W. et al. Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits. Nat. Neurosci., 1998 Oct , 1 (462-9).
2. Pubmed Morita T. et al. Cloning and characterization of maxi K+ channel alpha-subunit in rabbit kidney. Am. J. Physiol., 1997 Oct , 273 (F615-24).
1. Pubmed Kent R. et al. Load responsiveness of protein synthesis in adult mammalian myocardium: role of cardiac deformation linked to sodium influx. Circ. Res., 1989 Jan , 64 (74-85).