User Visitor Login
/images/graph_sv_i.gif
English only
EPFL > FSV > BBP > Channelpedia
Ion channels
References
Reports
SEARCH IN WIKI
Logged in as a Visitor.

All references automaticaly matched for Kir5.1


74. Pubmed Brasko C. et al. Expression of Kir4.1 and Kir5.1 inwardly rectifying potassium channels in oligodendrocytes, the myelinating cells of the CNS. Brain Struct Funct, 2016 Feb 15 , ().
73. Pubmed Wang L. et al. Caveolin-1 Deficiency Inhibits the Basolateral K+ Channels in the Distal Convoluted Tubule and Impairs Renal K+ and Mg2+ Transport. J. Am. Soc. Nephrol., 2015 Nov , 26 (2678-90).
72. Pubmed Thomson S. et al. Identification of the Intracellular Na+ Sensor in Slo2.1 Potassium Channels. J. Biol. Chem., 2015 Jun 5 , 290 (14528-35).
71. Pubmed Ramos H. et al. Molecular insights into the possible role of Kir4.1 and Kir5.1 in thyroid hormone biosynthesis. Horm Res Paediatr, 2015 , 83 (141-7).
70. Pubmed Zheng J. et al. Expedient total synthesis of small to medium-sized membrane proteins via Fmoc chemistry. J. Am. Chem. Soc., 2014 Mar 5 , 136 (3695-704).
69. Pubmed Tanemoto M. et al. Mislocalization of K+ channels causes the renal salt wasting in EAST/SeSAME syndrome. FEBS Lett., 2014 Mar 18 , 588 (899-905).
68. Pubmed Schirmer L. et al. Differential loss of KIR4.1 immunoreactivity in multiple sclerosis lesions. Ann. Neurol., 2014 Jun , 75 (810-28).
67. Pubmed Zhang C. et al. KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1). Proc. Natl. Acad. Sci. U.S.A., 2014 Aug 12 , 111 (11864-9).
66. Pubmed Juang J. et al. Disease-targeted sequencing of ion channel genes identifies de novo mutations in patients with non-familial Brugada syndrome. Sci Rep, 2014 , 4 (6733).
65. Pubmed Zaika O. et al. Direct inhibition of basolateral Kir4.1/5.1 and Kir4.1 channels in the cortical collecting duct by dopamine. Am. J. Physiol. Renal Physiol., 2013 Nov 1 , 305 (F1277-87).
64. Pubmed Harada Y. et al. Expressional analysis of inwardly rectifying Kir4.1 channels in Noda epileptic rat (NER). Brain Res., 2013 Jun 23 , 1517 (141-9).
63. Pubmed Zhang C. et al. Src-family protein tyrosine kinase regulates the basolateral K channel in the distal convoluted tubule (DCT) by phosphorylation of KCNJ10. J. Biol. Chem., 2013 Jul 19 , ().
62. Pubmed Lin D. et al. Inhibition of miR-205 impairs the wound-healing process in human corneal epithelial cells by targeting KIR4.1 (KCNJ10). Invest. Ophthalmol. Vis. Sci., 2013 , 54 (6167-78).
61. Pubmed Parrock S. et al. KCNJ10 mutations display differential sensitivity to heteromerisation with KCNJ16. Nephron Physiol, 2013 , 123 (7-14).
60. Pubmed Jin X. et al. S-Glutathionylation underscores the modulation of the heteromeric Kir4.1-Kir5.1 channel in oxidative stress. J. Physiol. (Lond.), 2012 Nov 1 , 590 (5335-48).
59. Pubmed Zhang X. et al. The disruption of central CO2 chemosensitivity in a mouse model of Rett syndrome. Am. J. Physiol., Cell Physiol., 2011 Sep , 301 (C729-38).
58. Pubmed Paulais M. et al. Renal phenotype in mice lacking the Kir5.1 (Kcnj16) K+ channel subunit contrasts with that observed in SeSAME/EAST syndrome. Proc. Natl. Acad. Sci. U.S.A., 2011 Jun 21 , 108 (10361-6).
57. Pubmed Edvinsson J. et al. Potassium-dependent activation of Kir4.2 K⁺ channels. J. Physiol. (Lond.), 2011 Dec 15 , 589 (5949-63).
56. Pubmed Trapp S. et al. Respiratory responses to hypercapnia and hypoxia in mice with genetic ablation of Kir5.1 (Kcnj16). Exp. Physiol., 2011 Apr , 96 (451-9).
55. Pubmed Mulkey D. et al. Astrocyte chemoreceptors: mechanisms of H+ sensing by astrocytes in the retrotrapezoid nucleus and their possible contribution to respiratory drive. Exp. Physiol., 2011 Apr , 96 (400-6).
54. Pubmed Pivonkova H. et al. Impact of Global Cerebral Ischemia on K(+) Channel Expression and Membrane Properties of Glial Cells in the Rat Hippocampus. , 2010 Sep 9 , ().
53. Pubmed Tang X. et al. Variable loss of Kir4.1 channel function in SeSAME syndrome mutations. Biochem. Biophys. Res. Commun., 2010 Sep 3 , 399 (537-41).
52. Pubmed D'Adamo M. et al. Genetic inactivation of KCNJ16 identifies Kir5.1 as an important determinant of neuronal PCO2/pH sensitivity. , 2010 Nov 3 , ().
51. Pubmed Sala-Rabanal M. et al. Molecular mechanisms of EAST/SeSAME syndrome mutations in Kir4.1 (KCNJ10). J. Biol. Chem., 2010 Nov 12 , 285 (36040-8).
50. Pubmed Williams D. et al. Molecular basis of decreased Kir4.1 function in SeSAME/EAST syndrome. J. Am. Soc. Nephrol., 2010 Dec , 21 (2117-29).
49. Pubmed Wenker I. et al. Astrocytes in the retrotrapezoid nucleus sense H+ by inhibition of a Kir4.1-Kir5.1-like current and may contribute to chemoreception by a purinergic mechanism. J. Neurophysiol., 2010 Dec , 104 (3042-52).
48. Pubmed Reichold M. et al. KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function. Proc. Natl. Acad. Sci. U.S.A., 2010 Aug 10 , 107 (14490-5).
47. Pubmed Søe R. et al. Modulation of Kir4.1 and Kir4.1-Kir5.1 channels by extracellular cations. Biochim. Biophys. Acta, 2009 Sep , 1788 (1706-13).
46. Pubmed Shang L. et al. Kir5.1 underlies long-lived subconductance levels in heteromeric Kir4.1/Kir5.1 channels from Xenopus tropicalis. Biochem. Biophys. Res. Commun., 2009 Oct 23 , 388 (501-5).
45. Pubmed Soe R. et al. Modulation of Kir4.1 and Kir4.1-Kir5.1 channels by small changes in cell volume. Neurosci. Lett., 2009 Jun 26 , 457 (80-4).
44. Pubmed Sindić A. et al. MUPP1 complexes renal K+ channels to alter cell surface expression and whole cell currents. Am. J. Physiol. Renal Physiol., 2009 Jul , 297 (F36-45).
43. Pubmed Rosenhouse-Dantsker A. et al. A sodium-mediated structural switch that controls the sensitivity of Kir channels to PtdIns(4,5)P(2). Nat. Chem. Biol., 2008 Oct , 4 (624-31).
42. Pubmed Tanemoto M. et al. MAGI-1a functions as a scaffolding protein for the distal renal tubular basolateral K+ channels. J. Biol. Chem., 2008 May 2 , 283 (12241-7).
41. Pubmed Lichter-Konecki U. et al. Gene expression profiling of astrocytes from hyperammonemic mice reveals altered pathways for water and potassium homeostasis in vivo. Glia, 2008 Mar , 56 (365-77).
40. Pubmed Yamamoto Y. et al. Immunohistochemical distribution of inwardly rectifying K+ channels in the medulla oblongata of the rat. J. Vet. Med. Sci., 2008 Mar , 70 (265-71).
39. Pubmed Lachheb S. et al. Kir4.1/Kir5.1 channel forms the major K+ channel in the basolateral membrane of mouse renal collecting duct principal cells. Am. J. Physiol. Renal Physiol., 2008 Jun , 294 (F1398-407).
38. Pubmed Yamamoto Y. et al. Expression of inwardly rectifying K+ channels in the carotid body of rat. Histol. Histopathol., 2008 Jul , 23 (799-806).
37. Pubmed Rojas A. et al. Modulation of the heteromeric Kir4.1-Kir5.1 channel by multiple neurotransmitters via Galphaq-coupled receptors. J. Cell. Physiol., 2008 Jan , 214 (84-95).
36. Pubmed Shang L. et al. Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels. Eur. Biophys. J., 2008 Feb , 37 (165-71).
35. Pubmed Rapedius M. et al. Control of pH and PIP2 gating in heteromeric Kir4.1/Kir5.1 channels by H-Bonding at the helix-bundle crossing. Channels (Austin), 2007 Sep-Oct , 1 (327-30).
34. Pubmed Rojas A. et al. Protein kinase C dependent inhibition of the heteromeric Kir4.1-Kir5.1 channel. Biochim. Biophys. Acta, 2007 Sep , 1768 (2030-42).
33. Pubmed Huang C. et al. Interaction of the Ca2+-sensing receptor with the inwardly rectifying potassium channels Kir4.1 and Kir4.2 results in inhibition of channel function. Am. J. Physiol. Renal Physiol., 2007 Mar , 292 (F1073-81).
32. Pubmed Butt A. et al. Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J. Cell. Mol. Med., 2006 Jan-Mar , 10 (33-44).
31. Pubmed Lam H. et al. Modulation of Kir4.2 rectification properties and pHi-sensitive run-down by association with Kir5.1. Biochim. Biophys. Acta, 2006 Nov , 1758 (1837-45).
30. Pubmed Benfenati V. et al. Guanosine promotes the up-regulation of inward rectifier potassium current mediated by Kir4.1 in cultured rat cortical astrocytes. J. Neurochem., 2006 Jul , 98 (430-45).
29. Pubmed Pondugula S. et al. Glucocorticoid regulation of genes in the amiloride-sensitive sodium transport pathway by semicircular canal duct epithelium of neonatal rat. Physiol. Genomics, 2006 Jan 12 , 24 (114-23).
28. Pubmed Tanemoto M. et al. PDZ-binding and di-hydrophobic motifs regulate distribution of Kir4.1 channels in renal cells. J. Am. Soc. Nephrol., 2005 Sep , 16 (2608-14).
27. Pubmed Hibino H. et al. Differential assembly of inwardly rectifying K+ channel subunits, Kir4.1 and Kir5.1, in brain astrocytes. J. Biol. Chem., 2004 Oct 15 , 279 (44065-73).
26. Pubmed Wu J. et al. An inwardly rectifying potassium channel in apical membrane of Calu-3 cells. J. Biol. Chem., 2004 Nov 5 , 279 (46558-65).
25. Pubmed Hibino H. et al. Expression of an inwardly rectifying K+ channel, Kir5.1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential. Eur. J. Neurosci., 2004 Jan , 19 (76-84).
24. Pubmed Wu J. et al. Expression and coexpression of CO2-sensitive Kir channels in brainstem neurons of rats. J. Membr. Biol., 2004 Feb 1 , 197 (179-91).
23. Pubmed Tanemoto M. et al. PDZ binding motif-dependent localization of K+ channel on the basolateral side in distal tubules. Am. J. Physiol. Renal Physiol., 2004 Dec , 287 (F1148-53).
22. Pubmed Casamassima M. et al. Identification of a heteromeric interaction that influences the rectification, gating, and pH sensitivity of Kir4.1/Kir5.1 potassium channels. J. Biol. Chem., 2003 Oct 31 , 278 (43533-40).
21. Pubmed Schulze D. et al. Phosphatidylinositol 4,5-bisphosphate (PIP2) modulation of ATP and pH sensitivity in Kir channels. A tale of an active and a silent PIP2 site in the N terminus. J. Biol. Chem., 2003 Mar 21 , 278 (10500-5).
20. Pubmed Kurachi Y. et al. [Molecular dynamics of K+ transport and its crucial involvement in signal transduction] , 2003 Jun , 23 (135-8).
19. Pubmed Ishii M. et al. Differential expression and distribution of Kir5.1 and Kir4.1 inwardly rectifying K+ channels in retina. Am. J. Physiol., Cell Physiol., 2003 Aug , 285 (C260-7).
18. Pubmed Konstas A. et al. Identification of domains that control the heteromeric assembly of Kir5.1/Kir4.0 potassium channels. Am. J. Physiol., Cell Physiol., 2003 Apr , 284 (C910-7).
17. Pubmed Kofuji P. et al. Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering. Glia, 2002 Sep , 39 (292-303).
16. Pubmed Raap M. et al. Diversity of Kir channel subunit mRNA expressed by retinal glial cells of the guinea-pig. Neuroreport, 2002 Jun 12 , 13 (1037-40).
15. Pubmed Lourdel S. et al. An inward rectifier K(+) channel at the basolateral membrane of the mouse distal convoluted tubule: similarities with Kir4-Kir5.1 heteromeric channels. J. Physiol. (Lond.), 2002 Jan 15 , 538 (391-404).
14. Pubmed Brochiero E. et al. Cloning of rabbit Kir6.1, SUR2A, and SUR2B: possible candidates for a renal K(ATP) channel. Am. J. Physiol. Renal Physiol., 2002 Feb , 282 (F289-300).
13. Pubmed Tanemoto M. et al. PSD-95 mediates formation of a functional homomeric Kir5.1 channel in the brain. Neuron, 2002 Apr 25 , 34 (387-97).
12. Pubmed Cui N. et al. Modulation of the heteromeric Kir4.1-Kir5.1 channels by P(CO(2)) at physiological levels. J. Cell. Physiol., 2001 Nov , 189 (229-36).
11. Pubmed Derst C. et al. Genetic and functional linkage of Kir5.1 and Kir2.1 channel subunits. FEBS Lett., 2001 Mar 2 , 491 (305-11).
10. Pubmed Jiang C. et al. An alternative approach to the identification of respiratory central chemoreceptors in the brainstem. , 2001 Dec , 129 (141-57).
9. Pubmed Pessia M. et al. Differential pH sensitivity of Kir4.1 and Kir4.2 potassium channels and their modulation by heteropolymerisation with Kir5.1. J. Physiol. (Lond.), 2001 Apr 15 , 532 (359-67).
8. Pubmed Xu H. et al. Modulation of kir4.1 and kir5.1 by hypercapnia and intracellular acidosis. J. Physiol. (Lond.), 2000 May 1 , 524 Pt 3 (725-35).
7. Pubmed Tucker S. et al. pH dependence of the inwardly rectifying potassium channel, Kir5.1, and localization in renal tubular epithelia. J. Biol. Chem., 2000 Jun 2 , 275 (16404-7).
6. Pubmed Tanemoto M. et al. In vivo formation of a proton-sensitive K+ channel by heteromeric subunit assembly of Kir5.1 with Kir4.1. J. Physiol. (Lond.), 2000 Jun 15 , 525 Pt 3 (587-92).
5. Pubmed Yang Z. et al. Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH. J. Gen. Physiol., 2000 Jul 1 , 116 (33-45).
4. Pubmed Liu Y. et al. The human inward rectifier K(+) channel subunit kir5.1 (KCNJ16) maps to chromosome 17q25 and is expressed in kidney and pancreas. Cytogenet. Cell Genet., 2000 , 90 (60-3).
3. Pubmed Pearson W. et al. Expression of a functional Kir4 family inward rectifier K+ channel from a gene cloned from mouse liver. J. Physiol. (Lond.), 1999 Feb 1 , 514 ( Pt 3) (639-53).
2. Pubmed Mouri T. et al. Assignment of mouse inwardly rectifying potassium channel Kcnj16 to the distal region of mouse chromosome 11. Genomics, 1998 Nov 15 , 54 (181-2).
1. Pubmed Lagrutta A. et al. Inward rectifier potassium channels. Cloning, expression and structure-function studies. , 1996 Sep , 37 (651-60).