User Visitor Login
English only
EPFL > FSV > BBP > Channelpedia
Ion channels
Logged in as a Visitor.

All references automaticaly matched for KCNK2

90. Pubmed Jorgensen C. et al. Lateral Fenestrations in K(+)-Channels Explored Using Molecular Dynamics Simulations. Mol. Pharm., 2016 May 26 , ().
89. Pubmed Wiedmann F. et al. Therapeutic targeting of two-pore-domain potassium (K2P) channels in the cardiovascular system. Clin. Sci., 2016 May 1 , 130 (643-50).
88. Pubmed Veale E. et al. Aristolochic acid, a plant extract used in the treatment of pain and linked to Balkan endemic nephropathy, is a regulator of K2P channels. Br. J. Pharmacol., 2016 May , 173 (1639-52).
87. Pubmed Woo J. et al. Inhibition of TREK-2 K(+) channels by PI(4,5)P2: an intrinsic mode of regulation by intracellular ATP via phosphatidylinositol kinase. Pflugers Arch., 2016 Jun 9 , ().
86. Pubmed McClenaghan C. et al. Polymodal activation of the TREK-2 K2P channel produces structurally distinct open states. J. Gen. Physiol., 2016 Jun , 147 (497-505).
85. Pubmed Ghatak S. et al. Lactate modulates the intracellular pH sensitivity of human TREK1 channels. Pflugers Arch., 2016 Feb 3 , ().
84. Pubmed Banerjee A. et al. L-Lactate mediates neuroprotection against ischaemia by increasing TREK1 channel expression in rat hippocampal astrocytes in vitro. J. Neurochem., 2016 Apr 9 , ().
83. Pubmed Lengyel M. et al. Formation of Functional Heterodimers by TREK-1 and TREK-2 Two-pore Domain Potassium Channel Subunits. J. Biol. Chem., 2016 Apr 28 , ().
82. Pubmed Levitz J. et al. Heterodimerization within the TREK channel subfamily produces a diverse family of highly regulated potassium channels. Proc. Natl. Acad. Sci. U.S.A., 2016 Apr 12 , 113 (4194-9).
81. Pubmed Kubanek J. et al. Ultrasound modulates ion channel currents. Sci Rep, 2016 , 6 (24170).
80. Pubmed Weller J. et al. pH-Sensitive K(+) Currents and Properties of K2P Channels in Murine Hippocampal Astrocytes. Adv Protein Chem Struct Biol, 2016 , 103 (263-94).
79. Pubmed Brohawn S. et al. How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2. Ann. N. Y. Acad. Sci., 2015 Sep , 1352 (20-32).
78. Pubmed Ghatak S. et al. Ischaemic concentrations of lactate increase TREK1 channel activity by interacting with a single histidine residue in the carboxy terminal domain. J. Physiol. (Lond.), 2015 Oct 7 , ().
77. Pubmed Lee A. et al. Arginine Vasopressin Potentiates the Stimulatory Action of CRH on Pituitary Corticotropes via a Protein Kinase C-Dependent Reduction of the Background TREK-1 Current. Endocrinology, 2015 Oct , 156 (3661-72).
76. Pubmed Bodnar M. et al. The potassium current carried by TREK-1 channels in rat cardiac ventricular muscle. Pflugers Arch., 2015 May , 467 (1069-79).
75. Pubmed Ehling P. et al. The CNS under pathophysiologic attack--examining the role of K₂p channels. Pflugers Arch., 2015 May , 467 (959-72).
74. Pubmed MacKenzie G. et al. Two-pore domain potassium channels enable action potential generation in the absence of voltage-gated potassium channels. Pflugers Arch., 2015 May , 467 (989-99).
73. Pubmed Kim D. et al. Role of K₂p channels in stimulus-secretion coupling. Pflugers Arch., 2015 May , 467 (1001-11).
72. Pubmed Mathie A. et al. Two-pore domain potassium channels: potential therapeutic targets for the treatment of pain. Pflugers Arch., 2015 May , 467 (931-43).
71. Pubmed Bista P. et al. The role of two-pore-domain background K⁺ (K₂p) channels in the thalamus. Pflugers Arch., 2015 May , 467 (895-905).
70. Pubmed Bandulik S. et al. Two-pore domain potassium channels in the adrenal cortex. Pflugers Arch., 2015 May , 467 (1027-42).
69. Pubmed Göb E. et al. The two-pore domain potassium channel KCNK5 deteriorates outcome in ischemic neurodegeneration. Pflugers Arch., 2015 May , 467 (973-87).
68. Pubmed Dong Y. et al. K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Science, 2015 Mar 13 , 347 (1256-9).
67. Pubmed Lin D. et al. The Role of the Two-Pore Domain Potassium Channel TREK-1 in the Therapeutic Effects of Escitalopram in a Rat Model of Poststroke Depression. CNS Neurosci Ther, 2015 Jun , 21 (504-12).
66. Pubmed Zhang G. et al. Prognostic significance of the TREK-1 K2P potassium channels in prostate cancer. Oncotarget, 2015 Jul 30 , 6 (18460-8).
65. Pubmed Rivas-Ramírez P. et al. Muscarinic modulation of TREK currents in mouse sympathetic superior cervical ganglion neurons. Eur. J. Neurosci., 2015 Jul , 42 (1797-807).
64. Pubmed Bista P. et al. Differential phospholipase C-dependent modulation of TASK and TREK two-pore domain K+ channels in rat thalamocortical relay neurons. J. Physiol. (Lond.), 2015 Jan 1 , 593 (127-44).
63. Pubmed Wang Y. et al. Regulation of Trek1 expression in nasal mucosa with allergic rhinitis by specific immunotherapy. Cell Biochem. Funct., 2015 Jan , 33 (23-8).
62. Pubmed Chen C. et al. Effects of fluoxetine on protein expression of potassium ion channels in the brain of chronic mild stress rats. Acta Pharm Sin B, 2015 Jan , 5 (55-61).
61. Pubmed Congiu C. et al. The role of the potassium channel gene KCNK2 in major depressive disorder. Psychiatry Res, 2015 Feb 28 , 225 (489-92).
60. Pubmed Veyssiere J. et al. Retroinverso analogs of spadin display increased antidepressant effects. Psychopharmacology (Berl.), 2015 Feb , 232 (561-74).
59. Pubmed Borsotto M. et al. Targeting two-pore domain K(+) channels TREK-1 and TASK-3 for the treatment of depression: a new therapeutic concept. Br. J. Pharmacol., 2015 Feb , 172 (771-84).
58. Pubmed Pei H. et al. [The two pore notassium channel TREK-1 and its related diseases]. Sheng Li Ke Xue Jin Zhan, 2015 Dec , 46 (468-72).
57. Pubmed Zhuo R. et al. Insights into the stimulatory mechanism of 2-aminoethoxydiphenyl borate on TREK-2 potassium channel. Neuroscience, 2015 Aug 6 , 300 (85-93).
56. Pubmed Zhuo R. et al. The isoforms generated by alternative translation initiation adopt similar conformation in the selectivity filter in TREK-2. J. Physiol. Biochem., 2015 Aug 14 , ().
55. Pubmed Schwartz E. et al. Nociceptive and inflammatory mediator upregulation in a mouse model of chronic prostatitis. Pain, 2015 Aug , 156 (1537-44).
54. Pubmed Brune K. et al. Pulmonary epithelial barrier function: some new players and mechanisms. Am. J. Physiol. Lung Cell Mol. Physiol., 2015 Apr 15 , 308 (L731-45).
53. Pubmed Braun G. et al. Differential sensitivity of TREK-1, TREK-2 and TRAAK background potassium channels to the polycationic dye ruthenium red. Br. J. Pharmacol., 2015 Apr , 172 (1728-38).
52. Pubmed Kim S. et al. Electrogenic transport and K(+) ion channel expression by the human endolymphatic sac epithelium. Sci Rep, 2015 , 5 (18110).
51. Pubmed Okada M. et al. Increase in the titer of lentiviral vectors expressing potassium channels by current blockade during viral vector production. BMC Neurosci, 2015 , 16 (30).
50. Pubmed Jiang J. et al. Trek1 contributes to maintaining nasal epithelial barrier integrity. Sci Rep, 2015 , 5 (9191).
49. Pubmed Schwingshackl A. et al. TREK-1 Regulates Cytokine Secretion from Cultured Human Alveolar Epithelial Cells Independently of Cytoskeletal Rearrangements. PLoS ONE, 2015 , 10 (e0126781).
48. Pubmed Rivera-Pagán A. et al. Up-regulation of TREK-2 potassium channels in cultured astrocytes requires de novo protein synthesis: relevance to localization of TREK-2 channels in astrocytes after transient cerebral ischemia. PLoS ONE, 2015 , 10 (e0125195).
47. Pubmed Schmidt C. et al. Inhibition of cardiac two-pore-domain K+ (K2P) channels--an emerging antiarrhythmic concept. Eur. J. Pharmacol., 2014 Sep 5 , 738 (250-5).
46. Pubmed Comoglio Y. et al. Phospholipase D2 specifically regulates TREK potassium channels via direct interaction and local production of phosphatidic acid. Proc. Natl. Acad. Sci. U.S.A., 2014 Sep 16 , 111 (13547-52).
45. Pubmed Bond R. et al. Inhibition of a TREK-like K+ channel current by noradrenaline requires both β1- and β2-adrenoceptors in rat atrial myocytes. Cardiovasc. Res., 2014 Oct 1 , 104 (206-15).
44. Pubmed Schwingshackl A. et al. Deficiency of the two-pore-domain potassium channel TREK-1 promotes hyperoxia-induced lung injury. Crit. Care Med., 2014 Nov , 42 (e692-701).
43. Pubmed Henstock J. et al. Remotely Activated Mechanotransduction via Magnetic Nanoparticles Promotes Mineralization Synergistically With Bone Morphogenetic Protein 2: Applications for Injectable Cell Therapy. Stem Cells Transl Med, 2014 Nov , 3 (1363-74).
42. Pubmed Xiao Z. et al. Activation of neurotensin receptor 1 facilitates neuronal excitability and spatial learning and memory in the entorhinal cortex: beneficial actions in an Alzheimer's disease model. J. Neurosci., 2014 May 14 , 34 (7027-42).
41. Pubmed Veale E. et al. Influence of the N terminus on the biophysical properties and pharmacology of TREK1 potassium channels. Mol. Pharmacol., 2014 May , 85 (671-81).
40. Pubmed Brohawn S. et al. Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc. Natl. Acad. Sci. U.S.A., 2014 Mar 4 , 111 (3614-9).
39. Pubmed Schmidt C. et al. Cardiac expression and atrial fibrillation-associated remodeling of K₂p2.1 (TREK-1) K⁺ channels in a porcine model. Life Sci., 2014 Mar 3 , 97 (107-15).
38. Pubmed Rodrigues N. et al. Synthesis and structure-activity relationship study of substituted caffeate esters as antinociceptive agents modulating the TREK-1 channel. Eur J Med Chem, 2014 Mar 21 , 75 (391-402).
37. Pubmed Tran V. et al. Mechanotransduction channels of the trabecular meshwork. Curr. Eye Res., 2014 Mar , 39 (291-303).
36. Pubmed Zappia K. et al. Cold hypersensitivity increases with age in mice with sickle cell disease. Pain, 2014 Jun 3 , ().
35. Pubmed Retailleau K. et al. Polycystins and partners: proposed role in mechanosensitivity. J. Physiol. (Lond.), 2014 Jun 15 , 592 (2453-2471).
34. Pubmed Bittner S. et al. TREK-king the blood-brain-barrier. J Neuroimmune Pharmacol, 2014 Jun , 9 (293-301).
33. Pubmed Lei Q. et al. Response of the human detrusor to stretch is regulated by TREK-1, a two-pore-domain (K2P) mechano-gated potassium channel. J. Physiol. (Lond.), 2014 Jul 15 , 592 (3013-30).
32. Pubmed Tong L. et al. Activation of K(2)P channel-TREK1 mediates the neuroprotection induced by sevoflurane preconditioning. Br J Anaesth, 2014 Jul , 113 (157-67).
31. Pubmed Acosta C. et al. TREK2 expressed selectively in IB4-binding C-fiber nociceptors hyperpolarizes their membrane potentials and limits spontaneous pain. J. Neurosci., 2014 Jan 22 , 34 (1494-509).
30. Pubmed Gohlke B. et al. SuperPain--a resource on pain-relieving compounds targeting ion channels. Nucleic Acids Res., 2014 Jan 1 , 42 (D1107-12).
29. Pubmed Lalo U. et al. Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol., 2014 Jan , 12 (e1001747).
28. Pubmed Dey D. et al. A potassium leak channel silences hyperactive neurons and ameliorates status epilepticus. Epilepsia, 2014 Feb , 55 (203-13).
27. Pubmed Shin H. et al. The inhibitory effects of bupivacaine, levobupivacaine, and ropivacaine on K2P (two-pore domain potassium) channel TREK-1. J Anesth, 2014 Feb , 28 (81-6).
26. Pubmed Pereira V. et al. Role of the TREK2 potassium channel in cold and warm thermosensation and in pain perception. Pain, 2014 Dec , 155 (2534-44).
25. Pubmed Seyler C. et al. Vernakalant activates human cardiac K(2P)17.1 background K(+) channels. Biochem. Biophys. Res. Commun., 2014 Aug 29 , 451 (415-20).
24. Pubmed Benoist D. et al. Systems approach to the study of stretch and arrhythmias in right ventricular failure induced in rats by monocrotaline. Prog. Biophys. Mol. Biol., 2014 Aug , 115 (162-72).
23. Pubmed Rinné S. et al. A splice variant of the two-pore domain potassium channel TREK-1 with only one pore domain reduces the surface expression of full-length TREK-1 channels. Pflugers Arch., 2014 Aug , 466 (1559-70).
22. Pubmed Yang X. et al. Functional study of TREK-1 potassium channels during rat heart development and cardiac ischemia using RNAi techniques. J. Cardiovasc. Pharmacol., 2014 Aug , 64 (142-50).
21. Pubmed Hund T. et al. β(IV)-Spectrin regulates TREK-1 membrane targeting in the heart. Cardiovasc. Res., 2014 Apr 1 , 102 (166-75).
20. Pubmed Lu L. et al. Electrophysiology and pharmacology of tandem domain potassium channel TREK-1 related BDNF synthesis in rat astrocytes. Naunyn Schmiedebergs Arch. Pharmacol., 2014 Apr , 387 (303-12).
19. Pubmed Noriega-Navarro R. et al. Novel TASK channels inhibitors derived from dihydropyrrolo[2,1-a]isoquinoline. Neuropharmacology, 2014 Apr , 79 (28-36).
18. Pubmed Brand T. et al. The cAMP-binding Popdc proteins have a redundant function in the heart. Biochem. Soc. Trans., 2014 Apr , 42 (295-301).
17. Pubmed Ali T. et al. The effect of pH and ion channel modulators on human placental arteries. PLoS ONE, 2014 , 9 (e114405).
16. Pubmed Schneider E. et al. Temperature sensitivity of two-pore (K2P) potassium channels. Curr Top Membr, 2014 , 74 (113-33).
15. Pubmed Roan E. et al. The 2-pore domain potassium channel TREK-1 regulates stretch-induced detachment of alveolar epithelial cells. PLoS ONE, 2014 , 9 (e89429).
14. Pubmed Hwang E. et al. A disulphide-linked heterodimer of TWIK-1 and TREK-1 mediates passive conductance in astrocytes. Nat Commun, 2014 , 5 (3227).
13. Pubmed Berrier C. et al. The purified mechanosensitive channel TREK-1 is directly sensitive to membrane tension. J. Biol. Chem., 2013 Sep 20 , 288 (27307-14).
12. Pubmed Heyman N. et al. TREK-1 currents in smooth muscle cells from pregnant human myometrium. Am. J. Physiol., Cell Physiol., 2013 Sep 15 , 305 (C632-42).
11. Pubmed Bittner S. et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat. Med., 2013 Sep , 19 (1161-5).
10. Pubmed Innamaa A. et al. Expression and effects of modulation of the K2P potassium channels TREK-1 (KCNK2) and TREK-2 (KCNK10) in the normal human ovary and epithelial ovarian cancer. Clin Transl Oncol, 2013 Nov , 15 (910-8).
9. Pubmed Pollema-Mays S. et al. Expression of background potassium channels in rat DRG is cell-specific and down-regulated in a neuropathic pain model. Mol. Cell. Neurosci., 2013 Nov , 57 (1-9).
8. Pubmed Ford K. et al. A role for TREK1 in generating the slow afterhyperpolarization in developing starburst amacrine cells. J. Neurophysiol., 2013 May , 109 (2250-9).
7. Pubmed Schmidt C. et al. Class I antiarrhythmic drugs inhibit human cardiac two-pore-domain K(+) (K2 ₂p) channels. Eur. J. Pharmacol., 2013 Dec 5 , 721 (237-48).
6. Pubmed Seyler C. et al. Inhibition of cardiac two-pore-domain K(+) (K2P) channels by the antiarrhythmic drug vernakalant - Comparison with flecainide. Eur. J. Pharmacol., 2013 Dec 27 , 724C (51-57).
5. Pubmed Devilliers M. et al. Activation of TREK-1 by morphine results in analgesia without adverse side effects. Nat Commun, 2013 Dec 17 , 4 (2941).
4. Pubmed Bagriantsev S. et al. A high-throughput functional screen identifies small molecule regulators of temperature- and mechano-sensitive K2P channels. ACS Chem. Biol., 2013 Aug 16 , 8 (1841-51).
3. Pubmed Enyeart J. et al. Ca2+ and K+ channels of normal human adrenal zona fasciculata cells: properties and modulation by ACTH and AngII. J. Gen. Physiol., 2013 Aug , 142 (137-55).
2. Pubmed Ye D. et al. [TREK1 potassium channels and depression]. Yao Xue Xue Bao, 2012 Nov , 47 (1403-8).
1. Pubmed Wu X. et al. Small RNA interference-mediated gene silencing of TREK-1 potassium channel in cultured astrocytes. J. Huazhong Univ. Sci. Technol. Med. Sci., 2012 Dec , 32 (849-55).