User Visitor Login
/images/graph_sv_i.gif
English only
EPFL > FSV > BBP > Channelpedia
Ion channels
References
Reports
SEARCH IN WIKI
Logged in as a Visitor.

All references automaticaly matched for ClvC7


123. Pubmed Zeng B. et al. A novel mutation and a known mutation in the CLCN7 gene associated with relatively stable infantile malignant osteopetrosis in a Chinese patient. Gene, 2016 Jan 15 , 576 (176-81).
122. Pubmed Zifarelli G. et al. A tale of two CLCs: biophysical insights toward understanding ClC-5 and ClC-7 function in endosomes and lysosomes. J. Physiol. (Lond.), 2015 Sep 15 , 593 (4139-50).
121. Pubmed Barrallo-Gimeno A. et al. Regulatory-auxiliary subunits of CLC chloride channel-transport proteins. J. Physiol. (Lond.), 2015 Sep 15 , 593 (4111-27).
120. Pubmed Kurita T. et al. The ClC-7 Chloride Channel Is Downregulated by Hypoosmotic Stress in Human Chondrocytes. Mol. Pharmacol., 2015 Jul , 88 (113-20).
119. Pubmed Capurro V. et al. Functional analysis of acid-activated Cl⁻ channels: properties and mechanisms of regulation. Biochim. Biophys. Acta, 2015 Jan , 1848 (105-14).
118. Pubmed Wen X. et al. Dental and Cranial Pathologies in Mice Lacking the Cl(-) /H(+) -Exchanger ClC-7. Anat Rec (Hoboken), 2015 Aug , 298 (1502-8).
117. Pubmed Turner A. et al. Development and validation of a high throughput, closed tube method for the determination of haemoglobin alpha gene (HBA1 and HBA2) numbers by gene ratio assay copy enumeration-PCR (GRACE-PCR). BMC Med. Genet., 2015 , 16 (115).
116. Pubmed Li X. et al. [Genetic analysis of a novel mutation resulting in autosomal dominant osteopetrosis II]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2014 Oct , 31 (612-4).
115. Pubmed Coudert A. et al. Differentially expressed genes in autosomal dominant osteopetrosis type II osteoclasts reveal known and novel pathways for osteoclast biology. Lab. Invest., 2014 Mar , 94 (275-85).
114. Pubmed Zheng H. et al. Identification of two novel CLCN7 gene mutations in three Chinese families with autosomal dominant osteopetrosis type II. Joint Bone Spine, 2014 Mar , 81 (188-9).
113. Pubmed Sartelet A. et al. A missense mutation accelerating the gating of the lysosomal Cl-/H+-exchanger ClC-7/Ostm1 causes osteopetrosis with gingival hamartomas in cattle. Dis Model Mech, 2014 Jan , 7 (119-28).
112. Pubmed Supanchart C. et al. ClC-7 expression levels critically regulate bone turnover, but not gastric acid secretion. Bone, 2014 Jan , 58 (92-102).
111. Pubmed Liang W. et al. Swelling-activated Cl- currents and intracellular CLC-3 are involved in proliferation of human pulmonary artery smooth muscle cells. J. Hypertens., 2014 Feb , 32 (318-30).
110. Pubmed Alam I. et al. Generation of the first autosomal dominant osteopetrosis type II (ADO2) disease models. Bone, 2014 Feb , 59 (66-75).
109. Pubmed Yu T. et al. Identification of TCIRG1 and CLCN7 gene mutations in a patient with autosomal recessive osteopetrosis. Mol Med Rep, 2014 Apr , 9 (1191-6).
108. Pubmed Barvencik F. et al. CLCN7 and TCIRG1 mutations differentially affect bone matrix mineralization in osteopetrotic individuals. J. Bone Miner. Res., 2014 Apr , 29 (982-91).
107. Pubmed Bonapace G. et al. Identification of two novel mutations on CLCN7 gene in a patient with malignant ostopetrosis. Ital J Pediatr, 2014 , 40 (90).
106. Pubmed Duan X. et al. Ion Channels, Channelopathies, and Tooth Formation. J. Dent. Res., 2013 Sep 27 , ().
105. Pubmed Ludwig C. et al. Common Gating of Both CLC Transporter Subunits Underlies Voltage-dependent Activation of the 2Cl-/1H+ Exchanger ClC-7/Ostm1. J. Biol. Chem., 2013 Oct 4 , 288 (28611-28619).
104. Pubmed Duan X. et al. Odontoblast-like MDPC-23 cells function as odontoclasts with RANKL/M-CSF induction. Arch. Oral Biol., 2013 Mar , 58 (272-8).
103. Pubmed Ishida Y. et al. A model of lysosomal pH regulation. J. Gen. Physiol., 2013 Jun , 141 (705-20).
102. Pubmed Suh K. et al. Xanthohumol modulates the expression of osteoclast-specific genes during osteoclastogenesis in RAW264.7 cells. Food Chem. Toxicol., 2013 Dec , 62 (99-106).
101. Pubmed Ochoa-de la Paz L. et al. Characterization of an outward rectifying chloride current of Xenopus tropicalis oocytes. Biochim. Biophys. Acta, 2013 Aug , 1828 (1743-53).
100. Pubmed Bollerslev J. et al. Autosomal dominant osteopetrosis revisited: lessons from recent studies. Eur. J. Endocrinol., 2013 Aug , 169 (R39-57).
99. Pubmed Szewczyk K. et al. Distinctive subdomains in the resorbing surface of osteoclasts. PLoS ONE, 2013 , 8 (e60285).
98. Pubmed Zanardi I. et al. An optical assay of the transport activity of ClC-7. Sci Rep, 2013 , 3 (1231).
97. Pubmed Pangrazio A. et al. A homozygous contiguous gene deletion in chromosome 16p13.3 leads to autosomal recessive osteopetrosis in a Jordanian patient. Calcif. Tissue Int., 2012 Oct , 91 (250-4).
96. Pubmed Costa A. et al. The Arabidopsis central vacuole as an expression system for intracellular transporters: functional characterization of the Cl-/H+ exchanger CLC-7. , 2012 May 28 , ().
95. Pubmed Wang C. et al. The virulence gene and clinical phenotypes of osteopetrosis in the Chinese population: six novel mutations of the CLCN7 gene in twelve osteopetrosis families. J. Bone Miner. Metab., 2012 May , 30 (338-48).
94. Pubmed Wang L. et al. ClC-3 is a candidate of the channel proteins mediating acid-activated chloride currents in nasopharyngeal carcinoma cells. Am. J. Physiol., Cell Physiol., 2012 Jul 1 , 303 (C14-23).
93. Pubmed Xue Y. et al. Report of two Chinese patients suffering from CLCN7-related osteopetrosis and root dysplasia. J Craniomaxillofac Surg, 2012 Jul , 40 (416-20).
92. Pubmed Stauber T. et al. Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol, 2012 Jul , 2 (1701-44).
91. Pubmed Al-Aama J. et al. A newly described mutation of the CLCN7 gene causes neuropathic autosomal recessive osteopetrosis in an Arab family. Clin. Dysmorphol., 2012 Jan , 21 (1-7).
90. Pubmed Kim H. et al. The inhibitory effect and the molecular mechanism of glabridin on RANKL-induced osteoclastogenesis in RAW264.7 cells. Int. J. Mol. Med., 2012 Feb , 29 (169-77).
89. Pubmed Kantaputra P. et al. Long-term survival in infantile malignant autosomal recessive osteopetrosis secondary to homozygous p.Arg526Gln mutation in CLCN7. Am. J. Med. Genet. A, 2012 Apr , 158A (909-16).
88. Pubmed Mindell J. et al. Lysosomal acidification mechanisms. Annu. Rev. Physiol., 2012 , 74 (69-86).
87. Pubmed Zhang H. et al. Characterisation of Cl(-) transporter and channels in experimentally induced myopic chick eyes. Clin Exp Optom, 2011 Nov , 94 (528-35).
86. Pubmed Majumdar A. et al. Degradation of Alzheimer's amyloid fibrils by microglia requires delivery of ClC-7 to lysosomes. Mol. Biol. Cell, 2011 May 15 , 22 (1664-76).
85. Pubmed Rajan I. et al. An alternative splicing variant in Clcn7-/- mice prevents osteopetrosis but not neural and retinal degeneration. Vet. Pathol., 2011 May , 48 (663-75).
84. Pubmed Leisle L. et al. ClC-7 is a slowly voltage-gated 2Cl(-)/1H(+)-exchanger and requires Ostm1 for transport activity. , 2011 Apr 28 , ().
83. Pubmed Duncan E. et al. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet., 2011 Apr , 7 (e1001372).
82. Pubmed Stauber T. et al. Sorting motifs of the endosomal/lysosomal CLC chloride transporters. J. Biol. Chem., 2010 Nov 5 , 285 (34537-48).
81. Pubmed Whyte M. et al. Elevated serum lactate dehydrogenase isoenzymes and aspartate transaminase distinguish Albers-Schönberg disease (Chloride Channel 7 Deficiency Osteopetrosis) among the sclerosing bone disorders. J. Bone Miner. Res., 2010 Nov , 25 (2515-26).
80. Pubmed Furthner D. et al. Osteopetrosis due to homozygous chloride channel ClCN7 mutation mimicking metabolic disease with haematological and neurological impairment. Klin Padiatr, 2010 May , 222 (180-3).
79. Pubmed Steinberg B. et al. A cation counterflux supports lysosomal acidification. J. Cell Biol., 2010 Jun 28 , 189 (1171-86).
78. Pubmed Weinert S. et al. Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl- accumulation. Science, 2010 Jun 11 , 328 (1401-3).
77. Pubmed Cao L. et al. Chloride channels and transporters in human corneal epithelium. Exp. Eye Res., 2010 Jun , 90 (771-9).
76. Pubmed Neagoe I. et al. The late endosomal ClC-6 mediates proton/chloride countertransport in heterologous plasma membrane expression. J. Biol. Chem., 2010 Jul 9 , 285 (21689-97).
75. Pubmed Pangrazio A. et al. Molecular and clinical heterogeneity in CLCN7-dependent osteopetrosis: report of 20 novel mutations. Hum. Mutat., 2010 Jan , 31 (E1071-80).
74. Pubmed Wartosch L. et al. A role for chloride transport in lysosomal protein degradation. Autophagy, 2010 Jan , 6 (158-9).
73. Pubmed Pressey S. et al. Distinct neuropathologic phenotypes after disrupting the chloride transport proteins ClC-6 or ClC-7/Ostm1. J. Neuropathol. Exp. Neurol., 2010 Dec , 69 (1228-46).
72. Pubmed Tian M. et al. Chloride channels regulate chondrogenesis in chicken mandibular mesenchymal cells. Arch. Oral Biol., 2010 Dec , 55 (938-45).
71. Pubmed Phadke S. et al. Novel mutations in Indian patients with autosomal recessive infantile malignant osteopetrosis. Indian J. Med. Res., 2010 Apr , 131 (508-14).
70. Pubmed Schulz P. et al. The G215R mutation in the Cl-/H+-antiporter ClC-7 found in ADO II osteopetrosis does not abolish function but causes a severe trafficking defect. PLoS ONE, 2010 , 5 (e12585).
69. Pubmed Kajiya H. et al. Characteristics of ClC7 Cl- channels and their inhibition in mutant (G215R) associated with autosomal dominant osteopetrosis type II in native osteoclasts and hClcn7 gene-expressing cells. Pflugers Arch., 2009 Oct , 458 (1049-59).
68. Pubmed Plans V. et al. Physiological roles of CLC Cl(-)/H (+) exchangers in renal proximal tubules. Pflugers Arch., 2009 May , 458 (23-37).
67. Pubmed Perdu B. et al. Refined genomic localization of the genetic lesion in the osteopetrosis (op) rat and exclusion of three positional and functional candidate genes, Clcn7, Atp6v0c, and Slc9a3r2. Calcif. Tissue Int., 2009 May , 84 (355-60).
66. Pubmed Zhao Q. et al. CLC-7: a potential therapeutic target for the treatment of osteoporosis and neurodegeneration. Biochem. Biophys. Res. Commun., 2009 Jul 3 , 384 (277-9).
65. Pubmed Henriksen K. et al. Characterization of acid flux in osteoclasts from patients harboring a G215R mutation in ClC-7. Biochem. Biophys. Res. Commun., 2009 Jan 23 , 378 (804-9).
64. Pubmed Wartosch L. et al. Lysosomal degradation of endocytosed proteins depends on the chloride transport protein ClC-7. FASEB J., 2009 Dec , 23 (4056-68).
63. Pubmed Besbas N. et al. A novel CLCN7 mutation resulting in a most severe form of autosomal recessive osteopetrosis. Eur. J. Pediatr., 2009 Dec , 168 (1449-54).
62. Pubmed Mazzolari E. et al. A single-center experience in 20 patients with infantile malignant osteopetrosis. Am. J. Hematol., 2009 Aug , 84 (473-9).
61. Pubmed Zhang Z. et al. Identification of the CLCN7 gene mutations in two Chinese families with autosomal dominant osteopetrosis (type II). J. Bone Miner. Metab., 2009 , 27 (444-51).
60. Pubmed Braun A. et al. Identification of ClC-7 as a major pathway for Cl- movement in lysosomes. Channels (Austin), 2008 Sep-Oct , 2 (309).
59. Pubmed Hou J. et al. ClC chloride channels in tooth germ and odontoblast-like MDPC-23 cells. Arch. Oral Biol., 2008 Sep , 53 (874-8).
58. Pubmed Henriksen K. et al. Ion transporters involved in acidification of the resorption lacuna in osteoclasts. Calcif. Tissue Int., 2008 Sep , 83 (230-42).
57. Pubmed Nijenhuis T. et al. Bone resorption inhibitor alendronate normalizes the reduced bone thickness of TRPV5(-/-) mice. J. Bone Miner. Res., 2008 Nov , 23 (1815-24).
56. Pubmed Okamoto F. et al. Intracellular ClC-3 chloride channels promote bone resorption in vitro through organelle acidification in mouse osteoclasts. Am. J. Physiol., Cell Physiol., 2008 Mar , 294 (C693-701).
55. Pubmed Graves A. et al. The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature, 2008 Jun 5 , 453 (788-92).
54. Pubmed Chu K. et al. CLCN7 polymorphisms and bone mineral density in healthy premenopausal white women and in white men. Bone, 2008 Dec , 43 (995-8).
53. Pubmed Neutzsky-Wulff A. et al. Characterization of the bone phenotype in ClC-7-deficient mice. Calcif. Tissue Int., 2008 Dec , 83 (425-37).
52. Pubmed Ripoll V. et al. Microphthalmia transcription factor regulates the expression of the novel osteoclast factor GPNMB. Gene, 2008 Apr 30 , 413 (32-41).
51. Pubmed Nielsen R. et al. Dissolution of the inorganic phase of bone leading to release of calcium regulates osteoclast survival. Biochem. Biophys. Res. Commun., 2007 Sep 7 , 360 (834-9).
50. Pubmed Sørensen M. et al. Diphyllin, a novel and naturally potent V-ATPase inhibitor, abrogates acidification of the osteoclastic resorption lacunae and bone resorption. J. Bone Miner. Res., 2007 Oct , 22 (1640-8).
49. Pubmed Waguespack S. et al. Autosomal dominant osteopetrosis: clinical severity and natural history of 94 subjects with a chloride channel 7 gene mutation. J. Clin. Endocrinol. Metab., 2007 Mar , 92 (771-8).
48. Pubmed Meadows N. et al. The expression of Clcn7 and Ostm1 in osteoclasts is coregulated by microphthalmia transcription factor. J. Biol. Chem., 2007 Jan 19 , 282 (1891-904).
47. Pubmed Jentsch T. et al. Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters. J. Physiol. (Lond.), 2007 Feb 1 , 578 (633-40).
46. Pubmed Lam C. et al. DNA-based diagnosis of malignant osteopetrosis by whole-genome scan using a single-nucleotide polymorphism microarray: standardization of molecular investigations of genetic diseases due to consanguinity. J. Hum. Genet., 2007 , 52 (98-101).
45. Pubmed Ignoul S. et al. Human ClC-6 is a late endosomal glycoprotein that associates with detergent-resistant lipid domains. PLoS ONE, 2007 , 2 (e474).
44. Pubmed Lange P. et al. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature, 2006 Mar 9 , 440 (220-3).
43. Pubmed Suzuki T. et al. Intracellular localization of ClC chloride channels and their ability to form hetero-oligomers. J. Cell. Physiol., 2006 Mar , 206 (792-8).
42. Pubmed Kornak U. et al. Polymorphisms in the CLCN7 gene modulate bone density in postmenopausal women and in patients with autosomal dominant osteopetrosis type II. J. Clin. Endocrinol. Metab., 2006 Mar , 91 (995-1000).
41. Pubmed Chu K. et al. Disease status in autosomal dominant osteopetrosis type 2 is determined by osteoclastic properties. J. Bone Miner. Res., 2006 Jul , 21 (1089-97).
40. Pubmed Henriksen K. et al. Degradation of the organic phase of bone by osteoclasts: a secondary role for lysosomal acidification. J. Bone Miner. Res., 2006 Jan , 21 (58-66).
39. Pubmed Del Fattore A. et al. Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment. J. Med. Genet., 2006 Apr , 43 (315-25).
38. Pubmed Schaller S. et al. The role of chloride channels in osteoclasts: ClC-7 as a target for osteoporosis treatment. Drug News Perspect., 2005 Oct , 18 (489-95).
37. Pubmed Pettersson U. et al. Polymorphisms of the CLCN7 gene are associated with BMD in women. J. Bone Miner. Res., 2005 Nov , 20 (1960-7).
36. Pubmed Kasper D. et al. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J., 2005 Mar 9 , 24 (1079-91).
35. Pubmed Campos-Xavier A. et al. Intrafamilial phenotypic variability of osteopetrosis due to chloride channel 7 (CLCN7) mutations. Am. J. Med. Genet. A, 2005 Mar 1 , 133A (216-8).
34. Pubmed Ernest N. et al. Relative contribution of chloride channels and transporters to regulatory volume decrease in human glioma cells. Am. J. Physiol., Cell Physiol., 2005 Jun , 288 (C1451-60).
33. Pubmed Comes N. et al. Differential expression of the human chloride channel genes in the trabecular meshwork under stress conditions. Exp. Eye Res., 2005 Jun , 80 (801-13).
32. Pubmed Scheel O. et al. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature, 2005 Jul 21 , 436 (424-7).
31. Pubmed Mummery J. et al. Expression of the chloride channel CLC-K in human airway epithelial cells. Can. J. Physiol. Pharmacol., 2005 Dec , 83 (1123-8).
30. Pubmed Alatalo S. et al. Osteoclast-derived serum tartrate-resistant acid phosphatase 5b in Albers-Schonberg disease (type II autosomal dominant osteopetrosis). Clin. Chem., 2004 May , 50 (883-90).
29. Pubmed Parkerson K. et al. Biophysical and pharmacological characterization of hypotonically activated chloride currents in cortical astrocytes. Glia, 2004 May , 46 (419-36).
28. Pubmed Henriksen K. et al. Characterization of osteoclasts from patients harboring a G215R mutation in ClC-7 causing autosomal dominant osteopetrosis type II. Am. J. Pathol., 2004 May , 164 (1537-45).
27. Pubmed Schaller S. et al. The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation. J. Bone Miner. Res., 2004 Jul , 19 (1144-53).
26. Pubmed Letizia C. et al. Type II benign osteopetrosis (Albers-Schönberg disease) caused by a novel mutation in CLCN7 presenting with unusual clinical manifestations. Calcif. Tissue Int., 2004 Jan , 74 (42-6).
25. Pubmed Blair H. et al. Recent advances in osteoclast biology and pathological bone resorption. Histol. Histopathol., 2004 Jan , 19 (189-99).
24. Pubmed Davies N. et al. Chloride channel gene expression in the rabbit cornea. Mol. Vis., 2004 Dec 30 , 10 (1028-37).
23. Pubmed Blair H. et al. In vitro differentiation of CD14 cells from osteopetrotic subjects: contrasting phenotypes with TCIRG1, CLCN7, and attachment defects. J. Bone Miner. Res., 2004 Aug , 19 (1329-38).
22. Pubmed Frattini A. et al. Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J. Bone Miner. Res., 2003 Oct , 18 (1740-7).
21. Pubmed Furukawa T. et al. [Various functions of ClC-type Cl- channels] Nippon Yakurigaku Zasshi, 2003 Nov , 122 (375-83).
20. Pubmed Auzanneau C. et al. A Novel voltage-dependent chloride current activated by extracellular acidic pH in cultured rat Sertoli cells. J. Biol. Chem., 2003 May 23 , 278 (19230-6).
19. Pubmed Olsen M. et al. Expression of voltage-gated chloride channels in human glioma cells. J. Neurosci., 2003 Jul 2 , 23 (5572-82).
18. Pubmed Campos-Xavier A. et al. Chloride channel 7 (CLCN7) gene mutations in intermediate autosomal recessive osteopetrosis. Hum. Genet., 2003 Feb , 112 (186-9).
17. Pubmed Waguespack S. et al. Chloride channel 7 (ClCN7) gene mutations and autosomal dominant osteopetrosis, type II. J. Bone Miner. Res., 2003 Aug , 18 (1513-8).
16. Pubmed Kulka M. et al. Mast cells express chloride channels of the ClC family. Inflamm. Res., 2002 Sep , 51 (451-6).
15. Pubmed Diewald L. et al. Activation by acidic pH of CLC-7 expressed in oocytes from Xenopus laevis. Biochem. Biophys. Res. Commun., 2002 Feb 22 , 291 (421-4).
14. Pubmed Li X. et al. Chloride channels and hepatocellular function: prospects for molecular identification. Annu. Rev. Physiol., 2002 , 64 (609-33).
13. Pubmed Alper S. et al. Genetic diseases of acid-base transporters. Annu. Rev. Physiol., 2002 , 64 (899-923).
12. Pubmed Vandewalle A. et al. [Function of the CLC chloride channels and their implication in human pathology] , 2002 , 23 (113-8).
11. Pubmed Kida Y. et al. Localization of mouse CLC-6 and CLC-7 mRNA and their functional complementation of yeast CLC gene mutant. Histochem. Cell Biol., 2001 Mar , 115 (189-94).
10. Pubmed Prince L. et al. KGF alters gene expression in human airway epithelia: potential regulation of the inflammatory response. Physiol. Genomics, 2001 Jul 17 , 6 (81-9).
9. Pubmed Kornak U. et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell, 2001 Jan 26 , 104 (205-15).
8. Pubmed Cleiren E. et al. Albers-Schönberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum. Mol. Genet., 2001 Dec 1 , 10 (2861-7).
7. Pubmed Scherer C. et al. Gene expression profiles of CLC chloride channels in animal models with different cardiovascular diseases. Cell. Physiol. Biochem., 2001 , 11 (321-30).
6. Pubmed Thakker R. et al. Molecular pathology of renal chloride channels in Dent's disease and Bartter's syndrome. Exp. Nephrol., 2000 Nov-Dec , 8 (351-60).
5. Pubmed Kornak U. et al. Complete genomic structure of the CLCN6 and CLCN7 putative chloride channel genes(1). Biochim. Biophys. Acta, 1999 Oct 6 , 1447 (100-6).
4. Pubmed Thakker R. et al. The role of renal chloride channel mutations in kidney stone disease and nephrocalcinosis. Curr. Opin. Nephrol. Hypertens., 1998 Jul , 7 (385-8).
3. Pubmed Eggermont J. et al. The exon-intron architecture of human chloride channel genes is not conserved. Biochim. Biophys. Acta, 1998 Apr 29 , 1397 (156-60).
2. Pubmed Hechenberger M. et al. A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. J. Biol. Chem., 1996 Dec 27 , 271 (33632-8).
1. Pubmed Brandt S. et al. ClC-6 and ClC-7 are two novel broadly expressed members of the CLC chloride channel family. FEBS Lett., 1995 Dec 11 , 377 (15-20).