User Visitor Login
/images/graph_sv_i.gif
English only
EPFL > FSV > BBP > Channelpedia
Ion channels
References
Reports
SEARCH IN WIKI
Logged in as a Visitor.

Role of receptor protein tyrosine phosphatase alpha (RPTPalpha) and tyrosine phosphorylation in the serotonergic inhibition of voltage-dependent potassium channels.

P Imbrici, S J Tucker, M C D'Adamo, M Pessia

Pflugers Arch., 2000 Dec , 441, 257-62

The activity of voltage-gated potassium (Kv) channels can be dynamically modulated by several events, including neurotransmitter-stimulated biochemical cascades mediated by G-protein-coupled receptors. By using a heterologous expression system, we show that activating the 5-HT2C receptor inhibits both Kv1.1 and Kv1.2 channels through a tyrosine phosphorylation mechanism. The major molecular determinants of channel inhibition were identified as two tyrosine residues located in the N-terminal region of the Kv channel subunit. Furthermore, we demonstrate that receptor protein tyrosine phosphatase alpha (RPTPalpha), a receptor protein tyrosine phosphatase, co-ordinates the inhibition process mediated via 5-HT2C receptors. We therefore propose that the serotonergic regulation of human Kv1.1 and Kv1.2 channel activity by the 5-HT2C receptor involves the dual coordination of both RPTPalpha and specific tyrosine kinases coupled to this receptor.

http://www.ncbi.nlm.nih.gov/pubmed/11211111