User Visitor Login
/images/graph_sv_i.gif
English only
EPFL > FSV > BBP > Channelpedia
Ion channels
References
Reports
SEARCH IN WIKI
Logged in as a Visitor.

Regulation of Kv1.3 channels in activated human T lymphocytes by Ca(2+)-dependent pathways.

M C Chang, R Khanna, L C Schlichter

Cell. Physiol. Biochem., 2001 , 11, 123-34

Activated T lymphoblasts respond more effectively to mitogenic stimuli than resting T cells, partly through differences in Ca(2+) signaling, which in turn depend on K(+) channel activity. Both Kv1.3 and Ca(2+)-activated K(+) (SK4) channels are up-regulated in T lymphoblasts. Since Ca(2+)- and calmodulin (CaM)-dependent signal-ing are key pathways in T-cell activation, we investigated their involvement in regulating the Kv1.3 current. Kv1.3 in lymphoblasts was significantly inhibited by elevating internal Ca(2+) to the micromolar level. It was also reduced in a Ca(2+)-dependent manner by inhibiting CaM with W-7 or calmidazolium. Part of the CaM-dependence is likely through CaM kinase since the current was also inhibited by the antagonist, KN-62, but not by the inactive analogue, KN-04. Kinase inhibition, unlike CaM inhibition, was only effective at physiological temperatures, a difference that implies involvement of more than one mechanism. We demonstrated a biochemical association of Kv1.3 protein in lymphoblasts with the multifunctional type II CaM kinase, but not with calmodulin. Thus, Kv1.3 forms a multi-protein complex with CaM kinase II (which binds to Ca(2+)/CaM) and previously identified proteins (e.g., PSD-95, src tyrosine kinase) that position the channel to respond to signaling pathways that are crucial for T-cell activation and proliferation.

http://www.ncbi.nlm.nih.gov/pubmed/11410708