User Visitor Login
/images/graph_sv_i.gif
English only
EPFL > FSV > BBP > Channelpedia
Ion channels
References
Reports
SEARCH IN WIKI
Logged in as a Visitor.

Distinct myoprotective roles of cardiac sarcolemmal and mitochondrial KATP channels during metabolic inhibition and recovery.

P E Light, H D Kanji, J E Fox, R J French

FASEB J., 2001 Dec , 15, 2586-94

The protective roles of sarcolemmal (sarc) and mitochondrial (mito) KATP channels are unclear despite their apparent importance to ischemic preconditioning. We examined these roles by monitoring intracellular calcium ([Ca]int), using fura-2 and fluo-3, in enzymatically isolated rat right ventricular myocytes. Myocyte mortality, estimated using a trypan blue assay, changed approximately in parallel with changes in [Ca]int. Chemically induced hypoxia (CIH), induced by application of cyanide and 2-deoxy-glucose, caused a steady rise in [Ca]int. Calcium increased more rapidly on 'reoxygenation' by return to control solutions. The protein kinase C (PKC) activator PMA abolished both phases of calcium increase. The mitoKATP channel-selective blocker 5-hydroxydecanoate partially prevented the PMA-induced protection during CIH, but not during reoxygenation. In contrast, HMR 1098, a sarcKATP channel-selective blocker, abolished protection only during the reoxygenation. Adenosine (A1) receptor activation prevented or reduced increases in [Ca]int and improved cell viability via a PKC and mito/sarcKATP channel-dependent mechanism. PKC-dependent protection against cytoplasmic calcium increases was also observed in a human cell line (tsA201) transiently expressing sarcKATP channels. Protection was abolished only during the reoxygenation phase by the amino acid substitution (T180A) in the pore-forming Kir6.2 subunit, a mutation previously shown to prevent PKC-dependent modulation. Our data suggest that sarc and mitoKATP channel populations play distinct protective roles, triggered by PKC and/or adenosine, during chemically induced hypoxia/reoxygenation.

http://www.ncbi.nlm.nih.gov/pubmed/11726534