User Visitor Login
English only
EPFL > FSV > BBP > Channelpedia
Ion channels
Logged in as a Visitor.

K depletion increases protein tyrosine kinase-mediated phosphorylation of ROMK.

Dao-Hong Lin, Hyacinth Sterling, Kenneth M Lerea, Paul Welling, Lianhong Jin, Gerhard Giebisch, Wen-Hui Wang

Am. J. Physiol. Renal Physiol., 2002 Oct , 283, F671-7

We purified His-tagged ROMK1 and carried out in vitro phosphorylation assays with (32)P-radiolabeled ATP to determine whether ROMK1 protein is a substrate for PTK. Addition of active c-Src and [(32)P]ATP to the purified ROMK1 protein resulted in the phosphorylation of the ROMK1 protein. However, c-Src did not phosphorylate R1Y337A in which tyrosine residue 337 was mutated to alanine. Furthermore, phosphopeptide mapping identified two phosphopeptides from the trypsin-digested ROMK1 protein. In contrast, no phosphorylated peptide has been found in the trypsin-digested R1Y337A protein. This suggested that two phosphorylated peptides might contain the same tyrosine residue. Also, addition of c-Src and [(32)P]ATP phosphorylated the synthesized peptide corresponding to amino acid sequence 333-362 of the COOH terminus of ROMK1. We then examined the effect of dietary K intake on the tyrosine-phosphorylated ROMK level. Although the ROMK channels pulled down by immunoprecipitation with ROMK antibody were the same from rats on a K-deficient diet or on a high-K diet, more ROMK channels were phosphorylated by PTK in rats on a K-deficient diet than those on a high-K diet. We conclude that ROMK1 can be phosphorylated by PTK and that tyrosine residue 337 is the key site for the phosphorylation. Also, the tyrosine phosphorylation of ROMK is modulated by dietary K intake. This strongly suggests that PTK is an important member of the aldosterone-independent signal transduction pathway for regulating renal K secretion.