User Visitor Login
English only
EPFL > FSV > BBP > Channelpedia
Ion channels
Logged in as a Visitor.

Mutation in nucleotide-binding domains of sulfonylurea receptor 2 evokes Na-ATP-dependent activation of ATP-sensitive K+ channels: implication for dimerization of nucleotide-binding domains to induce channel opening.

Mitsuhiko Yamada, Masaru Ishii, Hiroshi Hibino, Yoshihisa Kurachi

Mol. Pharmacol., 2004 Oct , 66, 807-16

The ATP-sensitive K+ (KATP) channel is composed of a sulfonylurea receptor (SUR) and a pore-forming subunit, Kir6.2. SUR is an ATP-binding cassette (ABC) protein with two nucleotide-binding domains (NBD1 and NBD2). Intracellular ATP inhibits KATP channels through Kir6.2 and activates them through NBDs. However, it is still unknown how ATP-bound NBDs activate KATP channels. A prokaryotic ABC protein, MJ0796, which is entirely NBD, forms a dimer in the presence of Na-ATP when its glutamate at position 171 is substituted with glutamine. Mg2+ or K+ destabilizes the dimer. We made the corresponding mutation in the NBD1 (D834N) and/or NBD2 (E1471Q) of SUR2A and SUR2B. As measured in the inside-out configuration of the patch-clamp method, SUR2x(D834N, E1471)/Kir6.2 channels mediated significantly larger currents in the presence of internal 1 mM Na-ATP than K-ATP alone or Mg-ATP. The response to Na-ATP resulted from an increase in the open probability but not single-channel amplitude of the channels and was abolished by glibenclamide (10(-5) M). In the presence of 1 mM Mg2+ -free ATP, Na+ increased the activity of the channels in a concentration-dependent manner. The Na-ATP-dependent activation was never observed with KATP channels including either the wild-type SUR2x, SUR2x(D834N), or SUR2x(E1471). Nicorandil activated SUR2x(D834N, E1471Q)/Kir6.2 channels more strongly in the presence of Na-ATP than K-ATP alone, whereas the reverse was true for wild-type SUR2x/Kir6.2 channels. Therefore, it is likely that NBDs of SUR2x dimerize in response to ATP and nicorandil. The dimerization induces the opening of the KATP channel, probably by causing a conformational change of SUR2x.