User Visitor Login
English only
EPFL > FSV > BBP > Channelpedia
Ion channels
Logged in as a Visitor.

Point mutation in the HCN4 cardiac ion channel pore affecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia.

Eyal Nof, David Luria, Dovrat Brass, Dina Marek, Hadas Lahat, Haya Reznik-Wolf, Elon Pras, Nathan Dascal, Michael Eldar, Michael Glikson

Circulation, 2007 Jul 31 , 116, 463-70

BACKGROUND: The hyperpolarization-activated nucleotide-gated channel--HCN4 plays a major role in the diastolic depolarization of sinus atrial node cells. Mutant HCN4 channels have been found to be associated with inherited sinus bradycardia. METHODS AND RESULTS: Sixteen members of a family with sinus bradycardia were evaluated. Evaluation included a clinical questionnaire, 12-lead ECGs, Holter monitoring, echocardiography, and treadmill exercise testing. Eight family members (5 males) were classified as affected. All affected family members were asymptomatic with normal exercise capacity during long-term follow-up. Electrophysiological testing performed on 2 affected family members confirmed significant isolated sinus node dysfunction. Segregation analysis suggested autosomal-dominant inheritance. Direct sequencing of the exons encoding HCN4 revealed a missense mutation, G480R, in the ion channel pore domain in all affected family members. Function analysis, including expression of HCN4 wild-type and G480R in Xenopus oocytes and human embryonic kidney 293 cells, revealed that mutant channels were activated at more negative voltages compared with wild-type channels. Synthesis and expression of the wild-type and mutant HCN4 channel on the plasma membrane tested in human embryonic kidney 293 cells using biotinylation and Western blot analysis demonstrated a reduction in synthesis and a trafficking defect in mutant compared with wild-type channels. CONCLUSIONS: We describe an inherited, autosomal-dominant form of sinus node dysfunction caused by a missense mutation in the HCN4 ion channel pore. Despite its critical location, this mutation carries a favorable prognosis without the need for pacemaker implantation during long-term follow-up.